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A Theory of Fatigue Crack 
Initiation in Solids 

Introduction 

The Griffith theory (1921) still plays a fundamental role in 
fracture mechanics. We propose a theory on fatigue crack in
itiation that is based upon the concept of Gibbs free energy 
change from a state of dislocation dipole accumulation along 
a layer (persistent slip band) to a state of crack initiation along 
the layer. Under some assumptions, when the Gibbs free 
energy change is plotted against cyclic numbers of loading, it 
takes a maximum value at a critical value of the cyclic number 
which is defined as the crack initiation cycle number. This 
theory is similar to the Griffith theory. In the Griffith theory, 
the Gibbs free energy change takes a maximum value at a 
critical size of the crack which becomes unstable for a given 
load. The present theory predicts a critical cycle number of 
loading under which the system becomes unstable for a given 
loading amplitude. 

One of the authors and his associates have proposed several 
theories on fatigue crack initiations (see Tanaka and Mura 
(1981), Mura and Tanaka (1981), Kato et al. (1984), Hirose 
and Mura (1985), Lin et al. (1986)). However, none of these 
theories has taken the present form of nucleation theory, 
which is similar to the Griffith theory. 

In the present paper, an extrusion or a distribution of 
vacancy dipoles is modeled as a PSB to obtain a crack initia
tion law. There have been numerous studies which describe in
trusions and extrusions observed during fatigue process since 
the pioneer study of Forsyth (Forsyth (1953)). According to 
recent experimental observations (see, e.g., Antonopoulos et 
al. (1976), Mughrabi and Wang (1982)), it seems most likely 
that the dislocation dipoles of vacancy type play a major role 
in the formation of a crack or cracks in fatigue. Within the 
PSB, the accumulation of dislocations may enhance the inter
nal tensile stress more and more with increasing number of 
loading cycles. The enhancement of the internal stress in the 
PSB leads to the energetically unstable state of a material con
sidered, and thus the stress is to be released via the formation 
of an extremely thin flat void, or the initiation of a crack. The 
critical point, in terms of the number of loading cycles, may be 
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given through the consideration of the balance of the elastic 
strain energy enhanced by the accumulating dislocations and 
the energy released via the formation of the crack in the PSB. 

The present theory can provide not only the S-N curve for 
crack initiation but its dependence on material parameters 
such as yield strength, grain size, etc. The irreversibility of the 
dislocation motion and the energy dissipation are also taken 
into consideration, and, via such consideration, more realistic 
results are obtained. 

Dislocation Dipole Model 

Consider a cyclic loading as shown in Fig. 1 in terms of 
shear stress. The loading shear amplitude is AT = T, - T 2 . At 
the first loading at point 1 in Fig. 1, a slip takes place in the 
weakest portion of the material. The slip band is denoted by 
layer I (-a<x<a, y = 0) in Fig. 2 and dislocations are piled 
up on the layer. Point O is a dislocation source. Point O can 
be an internal point in the material (Fig. 2(a)) or a point on the 

Fig. 1 Applied shear stress pattern 

W/^/ / / /<S^%% 
0 

(a) 

t 

(b) 

*T II 

Fig. 2 Vacancy-dislocation-dipole model of the persistent slip band 
(PSB); (a) PSB of length 2a in an infinite body, (b) PSB of length a in an in
finite half-body ending at the free surface 
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free surface (Fig. 2(b)). When point O is the free surface point, 
the dislocations on the layer in x<0 are fictitious. This is a 
simplification of calculation. The effect of free surface is com
plicated in mathematics. It will be published in a separate 
paper. 

The dislocation distribution on the layer I is determined 
from the equilibrium of Peach-Koehler force on the piled-up 
dislocations, 

-rf = 0, (1) 

when rf is the dislocation stress and rf the frictional stress. 
When unloaded, the reverse slip takes place on layer II as 
shown in Fig. 2. There is a good reason why the reverse slip 
takes place near the layer I. When layer II is close to layer I, 
the back stress rf on layer II is almost equal to if on layer I 
and it has the same direction of unloading shear (opposite to 
T[). Namely, r f stimulates reverse slip on layer II. When layer 
II is far away from layer I, this stimulation (acceleration) can 
not be seen. When the layer II is too close to layer I, annihila
tion of dislocations takes place and no damage of the material 
is accumulated by the loading and unloading. In order to have 
fatigue phenomena, layer II is located at a distance h from 
layer I. The dislocation distribution on layer II at point 2 in 
Fig. 1 is determined from the equilibrium condition, 

rS+rf+T2 + Tf = 0, (2) 

where rf is the stress caused by the new dislocations on layer 
II. When h/a << 1, we can assume that rf in (2) is almost 
equal to rf in equation (1). In (2), the frictional force is taken 
as negative because of the reverse slip. Using (1) we write (2) as 

r f - A T + 2 ^ = 0, (3) 

where AT = T1-T2. The dislocation distribution on layer II is 
shown in Fig. 2. This can be a model for the extrusion. When 
layer II is considered at x2 = h, it provides a model for the in
trusion. For the present theory of crack initiation, it is relevant 
to consider an extrusion as explained later. 

When the specimen is loaded again to point 3 in Fig. 1 slip 
takes place on layer I by the help of the dislocation stress rfon 
layer II. This is the ratcheting effect of damage (dislocation) 
accumulation. The dislocation distribution on layer I is deter
mined by the equilibrium condition 

7?+T?+ 7 , - ^ = 0, (4) 

where rf is the dislocation stress due to the dislocations on 
layer I. rf on layer I is assumed to be the same as rf in layer II. 
Equation (4) is written from (2) as 

(T?-rf) + (AT-2T/) = 0. (5) 
Similarly, at point 4 in Fig. 1 the dislocations on layer II is 
determined from 

T?+Tf+T2+T /=0 (6) 

which is written as 
( r ? - r £ ) - (AT - 2 7 ^ = 0 , (7) 

where if is the stress caused by the dislocations on layer II. 
Generally, we have 

(T?n+1-rf„_1) + (A7-27/) = 0 (8) 
at the maximum loading T\ and 

( ^ - ^ , - 2 ) - ( A 7 - 2 T / ) = 0 (9) 

at the minimum unloading T2 . 
The shear stress T„(X) caused by dislocation distribution 

D„ (x) is 

T°(X)=A\[ Dn(x')/{x-x') dx', (10) 

where A=fib/2ir(l-v). b is the Burgers vector, n the shear 
modulus, and v is Poisson's ratio. Equations (8) and (9) are 

the integral equations for unknown D„ (x) and easily solved, 

= (AT-2Tf)x/TrA(a2-x2)l/2 (11) 

or 
D2n+l - -D2n~n(AT-2Tf)x/TtA(a2 -x2)U2 (12) 

for large cycle number, n. The amount of slip on layer I at 
point (2H + 1) in Fig. 1 is 

[Ui], = b^D2n + i(x)dx 

= n(AT-2Tf)(a
2-x2)mb/TrA 

and that on layer II at point 2« is 

(13) 

[«,]„= -n(AT-2Tf) (a2-x2)W2b/TtA. (14) 

Energy Calculations 

When the dislocation dipoles are piled up as shown in Fig. 
2, the elastic strain energy is built up in the material. We 
evaluate the elastic strain energy W\ after n cycles of loading 
(amid point 2n and point (2M + 1) in Fig. 1), 

*ri=4-L',wi> (15) 

where a^ is the dislocation stress and u,j the corresponding 
elastic distortion. The displacement «,- has multiple values [u{] 
= u{ (upper surface) - ui (lower surface) along layer I and 
also layer II. [«,] on layer I is denoted by [u^j and it is given 
by (13). That on layer II, [«]]//, is given by (14). Integrating 
(15) by parts, considering CT,W = 0 in D and au rij = 0 on \DI, 
we have 

W, = — 
1 

] o-n luihdx—— j o ffi2[«i]//dx, (16) 

where I and II indicate the line integrals along layer I and layer 
II, respectively. an is the shear stress due to the dislocations in 
layers I and II, and an = a\2 + <r{2, where a[2 is the stress 
caused by the dislocations on layer I and a{2 is the stress 
caused by the dislocations on layer II. Since a\2 [MJ/ = ai2 
[Ui]„, and a\2 (x, - h) [M,]/7 = a{{ (x,0) [«,]/, (16) is written as 

W1 = -\"a'nixMUihdx- \'a\2(x,-h^u^dx, (17) 
Jo Jo 

where 
a[2(x,0) = A\a_a

D^X,)-

a{2(x,-h)=A\ 
J - a 

, -dx' 
x—x 
D2n+l(x')(x-x'){(x-x')2- •h2} 

{(x-x')2 + h2)2 

Using (12), we get 
a{2(x,0)=-«(A7-2T/), 
a[2(.x,-h)= -n(AT-2T/)[l-(l/R)(-x sind + h cosO) 

-(a2h/R3) cos 36], 
where 

R4=l(a + x)2 + h2}{a-x)2 + h2}, 
sine = -j2hx/R(R2 + a2-x2 + h2)U2 

= -sgn(x)(i?2-a2+x2-fl2)1/2/V2i?, 
cos9 = (i?2 + a 2 -x 2 + n2)1/2/V2R. 

It is noted that a[2 (x,0) = rf„ +,. 

dx'. (18) 

(19) 

(20) 
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(b) 

Fig. 3 (a) PSB stretched by the dislocation dipoles enhancing the 
elastic strain energy; (b) Initiation of a crack of length c in the PSB relax
ing the internal stress 

Integrals in (17) are completed as 

W, = (\-v)(AT~2Tf)
2n2a2(\-k){3{K(k)-E(k)} 

+ kK(k)}\kn, (21) 

» (l-i/)(Ar-2T /)
2«2a2e2[log(8/e) 

- (3/2)]//t, for small e, 

where 

k = ((4a2 + ft2)1/2-/!j2/4a2, 

K(k) = ( — 
Jo (1-

E(k) = j ^ 

. { 2 ) 1 / 2 ( 1 _ ^ 2 ) 1 / 2 ' (22) 

( l -A:^ 2 ) 1 ' 
-rff. 

It is noted that W^ = 0 for h = 0 and W, becomes the disloca
tion self energy when A —oo. 

Crack Initiation Law 

In order to explain the present crack nucleation theory, the 
extrusion model Fig. 3(a) is used. The extrusion is denoted by 
c. The value c is obtained from 

c=Nb (23) 

where N is the total number of positive dislocations on layer I 
or the total number of negative dislocations on layer II, 

N= \ D2„ + ldx = n(AT-2Tf)a/TrA. (24) 

b is the Burgers vector. 
A crack of length c is nucleated, as shown in Fig. 3(b), by 

the energy release Wx of the dislocation dipoles in Fig. 3(a) 
and the mechanical energy release W2, where 

W2~TT(1-P)(C/2)2(AT)2/2II 

»(1 -v)(Ar-27f)
2{AT)2a2b2n1/'&-KA2ii. (25) 

Figure 3(b) is the dislocation free state or the dislocation 
stress-free state, but it contains a crack c. The persistent slip 
band in Fig. 3(a) has been stretched by the dislocation dipoles 
but it is relaxed to Fig. 3(b) by the crack nucleation with com
pensation of the dislocation dipoles. 

The Gibbs free-energy change to be considered becomes 

AG = -Wl-W2 + 2cy 

= -W{-W2 + 2bn(Ar- 2rf)ayl-KA. 

where 7 is the surface energy of the crack. 

(26) 

Ar, MPa 
245 100 

& \ , n i i 1 , \ 
n, \ 200 

-

75 

V.00 600 

6P 

800 

i 
" j 1000 

Fig. 4 Variation of the Gibbs free-energy change AG with the number 
of loading cycles showing that the maximum point is retarded by the 
decrease of the applied stress range AT 

When (26) is plotted against n, Fig. 4 is obtained. AG takes 
a maximum value for n = nr Similarly to the Griffith theory, 
the system becomes unstable at nt. We postulate that n-, is a 
critical cycle number for fatigue crack initiation under a given 
applied stress amplitude AT. This crack initiation cycle number 
n, is obtained from 

dn 
(AG) = 0 (27) 

or 

(28) 

- 4(1 - v)(AT-2rf)
2nih

2 log(8/e)/e/i 

-2(\-v)(Ar-2rf)
2ni(AT)2a2b2/%-wA2

lx 

+ 2b(AT-2T /)a7/7r,4=0. 

Figure 4 illustrates that as AT becomes lower, the AG versus 
n curve becomes flatter; in other words, the range of n within 
which condition (27) can be approximately satisfied becomes 
wider. Such a tendency may imply wider variation of fatigue 
life at lower stress ranges. 

Equation (28) provides the S-N curves for crack initiation as 
shown in Figs. 5-9 where the values of the following 
parameters are varied in order to show their effects on the S-N 
curves: the frictional stress rp the half length of the persistent 
slip band a, the surface energy 7, Young's modulus 
£=2(1 + v)ii, and the height of the dislocation dipole h. 

In the present theory, the fatigue limit can be regarded as 
twice the frictional stress as easily seen from (28); i.e., no 
crack can be initiated at stress ranges lower than 2T/. Since the 
frictional stress Ty is relevant to the yield strength of a 
material, the dependence of the S-N curve on ij as shown in 
Fig. 5 implies the well-known relationship found between 
fatigue limit and ultimate tensile strength or yield strength 
(see, e.g., Hempel (1965)); i.e., the higher the ultimate tensile 
strength or the yield strength, the higher the fatigue limit. 

The present theory also gives the dependence of the crack 
initiation diagram on the grain size (see, e.g., Taira et al. 
(1979)), when the length of the persistent slip band 2a is 
regarded as the grain size: The smaller the grain size, the 
higher the fatigue strength for crack initiation. Figure 6 
depicts such dependence. 

The dependence of the S-N curve on 7 is shown in Fig. 7, in 
which larger 7 gives higher fatigue strength and shifts the knee 
of the S-N curve rightwards, i.e., to longer «,- region. It is 
noted that the surface energy of the order of lN/m (see, e.g., 
Broek (1982)) gives a more realistic result than the so-called 
plastic work y„ does. Namely, the present theory does not re
quire the modification by yp which is over 103 higher than 7. 

Only subtle difference can be seen in Fig. 8; nevertheless, a 
higher value of Young's modulus E gives a higher value of the 
fatigue strength, but does not shift the knee of the S-N curve 
as the case of a (see also Fig. 15 for clearer E-dependence of 
the curve). 

Figure 9 depicts the dependence of the S-N curve on the 
height of the dislocation dipole h: A smaller value of h gives 
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a higher value of the fatigue strength and shifts the knee to 
longer «,• region. The effect of h is saturated for 
/j<1.6x 10~3nminthecaseof Fig. 9, although the value of h 
is reportedly in the order of 1.6nm (see, e.g., Antonopoulos et 
al. (1976), NS Essmann and Mughrabi (1979)) and an /j-value 
lower than 0.3nm (one atomic spacing) is unrealistic. 

Reversibility of Dislocations 

So far the theory is based upon the assumption that the 
piled-up dislocations are irreversible. No dislocations ac
cumulated during loading escape or annihilated when unload
ed, and no dislocations accumulated during unloading are 
changed when loaded again. Here this assumption is 
abandoned. 

The equilibrium condition for dislocations on layer I at the 
first loading is 

Tf+T,- r = 0 (29) 

which is the same as (1). When unloaded, the dislocations on 
layer I are assumed to be reduced by the reversible processes 
and the corresponding dislocation stress rf is reduced to/Vf, 0 
< / < 1. The equilibrium equation on layer II becomes 

rf+/rP+r2 + r / = 0. (30) 
When loaded again, the stress of the dislocations on layer I 

is increased by Arfand the stress of the dislocations located on 
layer II is reduced to /rf. The equilibrium equation on layer I 
becomes 

Arf+/7f+/7?+ ri-rf = 0. (31) 
When unloaded, the increased dislocation stress Arf is 

reduced to/Arf. The equilibrium equation on layer II becomes 

ATf+/rf+/r?+/Arf+T2 + r / = 0. (32) 
The same argument holds at points 5 and 6 in Fig. 1 and 

gives 

LT\D +/rf+/Tf+/Arf+/Ar?+ r, - T, = 0, 
Arf +/T?+/T?+/AT?+/AT?+/A7f° + r2 + y = 0 (33) 
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where AT\D is the stress increment by the increased disloca
tions on layer I during the third loading, and Arf is the stress 
increment by the increased dislocations on layer II during the 
third unloading. 

Similarly at points (2n-l) and 2n in Fig. 1, at the notch 
loading and unloading, we have 

n-2 

A r / ^ ^ + z E ^ f + Arf) + T1-T/ = 0, 
7 = 0 

n - 2 

(34) 

AT2<" - '>D + / £ (Arf + Arf) +/Aif - l ) D + T2 + y = 0 
j=o 

where. 
ATpD = rf and AT\D = AT? (/ = 1,2). 

These recurrent series give 
1-(1 _ A2(«-l) 

AT,<»-'W= )-A (Ar-2r /)-(l-y)2("-"(T1-T /) 

(35) 
1+(1 - A2n-l 

AT7(*-i)z>= v j) ( A T _ 2 T / ) _ ( 1 _y ) 2„- 1 ( T i _ T / ) 2 - / 
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(9) 
where/AT!'""1 '0 and/AT2

("-"D correspond to 0f„ + 1 -Tg,_i) 
in (8) and (rf„ - Tf„_2) in (9). When /= 1, equations (8) and 
are recovered. From (35), we have 

"+,' r l-(i-f) 2< n + 1 ) 

TL2, 

A T - 2 T , 1 - 0 - . / ) 2<" + 1 > . ———I (T 

2 - / A2-J) Tf) 

^=/EAT 2 C'-^=/ [« + (1- . / ) [ ! - ( l -^) 2 "] - ) A T - 2 T / 

i ( i - y ) [ i - d - y ) 2 " ] , 

2 - / 

(36) 
f(2-J) 

For large n, (36) is approximately 

T S + I « - ^ " - " ( A T - 2 T 7 ) / / ( 2 -J) 

and, therefore, 

D2n+l - -D2„ ~n(Ar~2Tf)xf/TrA(2-J)(a2 - * 2 ) 1 / 2 

It is concluded that when fraction (\-f) of newly created 
dislocations of each cycle of loading or unloading are reversi
ble, the necessary correction for the final formula is to change 
n to nf/(2 - / ) . When n, in (28) is replaced by n, /(2 -J), 

/A 3̂ 0 ,A , 2 j . Ve{log(8 / e ) - (3 /2)} (AT)J - ZTfiArY + — 

(37) 

(38) 

V2 

i r ( l -v) 2 L 

w(l-v)2 

2r / £[log(8/e)-(3/2)) + 

• A T 

(2-J)y 

fan. •]-

(39) 

0. 

Equation (39) provides the S-N curves for crack initiation as 
shown in Fig. 10 where the irreversibility factor / is varied 
f rom/ = 0.01 t o / = 1. The values of the other parameters are 
chosen so as to be proper ones as shown in the figure. The 
smaller the factor / , the higher the fatigue strength and the 
longer the crack initiation life. The dependence of the S-N 
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curve on the other parameters, i.e., 7y, a, 7, E, and h is similar 
to that given by (28). It is noted that, in (39), the effect of the 
surface energy 7 is amplified by a factor of (2 — / ) / / so that a 
value of the factor / lower than unity gives higher fatigue 
strength and shifts the knee of an S-N curve to longer «,• range 
in comparison with the corresponding S-N curve given by (28) 
( /=!)-

Another modification of the theory can be considered for 
the dislocation energy source Wy. So far 100 percent of Wl is 
assumed to be used for the crack initiation. If it is assumed 
that some fraction g of Wx is used for the crack initiation, 
equation (28) is modified to 

AG =~gWl-W2 + 2cy. (40) 

Then we have, instead of (39), 

% / t
2e{log(8/e)-(3/2))AT 

(AT) 3 - 2T / (AT) 2 + -
7T(1 " V)2 

v (41) 

[2gTfe log(8/e) - (3/2)) + y/an,] = 0. 
TT(1 - vf 

For g<\, (41) gives higher fatigue strength and shifts the 
knee of an S-N curve to longer n, range in comparison with the 
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corresponding S-N curve given by (28) (g = 1) as shown in Fig. 
11. The smaller the factor g, the higher the fatigue strength 
and the longer the crack initiation life. The residual energy 
(1-g) Wy may be dissipated in the form of heat as often 
observed during fatigue tests. 

Combining (39) and (41), we have 

(AT ) 3 - 2T , (AT) 2 + 
4g/x

26log(8/e) 
ir(l - vf 

• A T — 
4<I2 

7T(1 - V)2 

[2gT/£log(8/e) + fa^
7] = 0. (42) 

The dependence of the S-N curve given by (42) on rf, a, y, 
E, and h is shown in Figs. 12-16, respectively. These figures 
show that (42), i.e., the introduction of factors/and g can 
give longer crack initiation life and thus it can bring about 
more realistic S-N curves than (28). For typical values of the 
parameters, i.e., E = 206GPa, p = 0.3, T/ = 25MPa, 
«=l(%m, 7=lN/m, h= 1.6nm, /=0.5 , and g = 0.1, the in
itial crack length c is varied from 0.17 to 0.82 pm as the ap
plied stress range AT decreases. 
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Surface Waves for Material 
Characterization 
Analyses are presented for the propagation of harmonic surface waves on a 
transversely isotropic layer rigidly bonded to a transversely isotropic substrate of 
different material. The layer-substrate system is also assumed to be in contact with a 
liquid and inviscid space. The propagation takes place along an axis of symmetry of 
both the layer and the substrate. Exact closed-form solutions for the characteristic 
dispersion relations are presented. Numerical results are presented for material com
binations of three classes of centrifugally cast stainless steel material. Results clearly 
demonstrate the influence of the layer thickness on the propagation speed and, 
hence, provide a means of material characterization. 

Introduction 

The need to carry out material characterization analysis, 
particularly with respect to specific anisotropic character, is 
well documented. It has recently been recognized that 
ultrasonic techniques offer potential for material inspection 
(Jeong, 1987; Kupperman et al., 1987; Ogilvy, 1986; Rose et 
al., 1988; Silk, 1981; Curtis and Ibrahim, 1981; Sayers, 1982; 
Delsanto and Clark, 1987; Mase, 1987; Hirao et al., 1987). A 
detailed description of the problem of grain structure and the 
various anisotropic character formations of advanced 
materials is reported by Jeong (1987). Furthermore, many of 
the existing experimental observations which are associated 
with unusual inspection can not be fruitful if one does not 
know where the ultrasonic beam is going or how it is modified 
by anisotropic influences. As a result, surface wave pro
cedures are introduced either to characterize structural 
materials directly or as an adjunct to longitudinal or shear 
waves transversing the bulk material. 

Under laboratory conditions, the velocity of longitudinal 
waves and the ratio of longitudinal to shear wave velocities ap
pear as parameters for the prediction of the microstructure of 
advanced materials (Kupperman et al., 1987; Ogilvy, 1986; 
Rose et al., 1988; Silk, 1981; Curtis and Ibrahim, 1981; 
Sayers, 1981). For example, in centrifugally-cast stainless steel 
(hereinafter referred to as CCSS) Kupperman et al. found that 
beam skewing in certain columnar structures is strong enough 
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so that measurements of probe separation at maximum re
ceived signal intensities for 45 deg shear waves, pitch-catch 
transducers, can be correlated with microstructure. Other 
work associated with anisotropic behavior of welded materials 
is presented by Ogilvy where a theoretical ray tracing model is 
presented. 

Utilization of quasi-longitudinal waves incident at different 
angles for material characterization was proposed by Rose et 
al. The experimental technique described by Rose et al. in
volves sending the ultrasonic pulse at a specific angle and 
searching for the maximum amplitude with another probe. 
The optimal distance between the transmitter when normal
ized by the plate thickness gives the skip distance factor. 
Assuming uniform equivalent anisotropic properties, this skip 
distance factor can be used to characterize the properties of 
the material with an assumption of a uniform equivalent 
anistropic model (see Rose et al., 1988). All of the approaches 
described by Jeong (1987), Kupperman et al. (1987), Ogilvy 
(1986), and Rose et al. (1988) call for the wave to pass through 
the solid twice and, hence, depend strongly on the knowledge 
of the actual local thickness of the inspected component such 
as a plate or a pipe. Looking for an alternative solution to this 
problem, utilization of guided waves was proposed by Rose et 
al. The critical angle or frequency measurements related to the 
plate wave modes and/or surface wave velocity measurements 
do not possess these disadvantages of the longitudinal and 
transverse waves. Such techniques are therefore proposed as 
complimentary to bulk wave measurements for anisotropy 
material characterization and the existence of inhomogeneity 
with depth. 

A review of existing literature reveals several aspects of the 
propagation of surface waves in anisotropic half spaces in the 
absence of the fluid and layer (see, for example, Delsanto and 
Clark, 1987; Mase, 1987; Hirao et al., 1987; Kaibichev, 1987; 
Royer and Dieulesant, 1984). The reflections of ultrasonic 
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waves at liquid-cubic solid interfaces are reported by Atalar 
(1983). The propagation of ultrasonic waves from isotropic 
solid-fluid interfaces separated by isotropic layers are given by 
Nayfeh et al. (1981) and Chimenti and Nayfeh (1982). 

In the present paper we study the propagation of surface 
waves on a medium consisting of a transversely-isotropic half 
space in rigid contact with a transversely-isotropic half space 
substrate of a different material. The total system is in contact 
with a fluid space. We then consider the wave that propagates 
along the fluid-layer interface. The analytical results will be 
presented in closed form. Results for solids possessing cubic 
and isotropic material symmetries will be found as special 
cases of the general solutions by involving the appropriate 
restrictions on the properties. Furthermore, results for a half 
space can be deduced by either setting the thickness of the 
layer equal to zero or by setting the properties of the layer 
equal to their corresponding properties of the substrate. In all 
cases, results for the dry medium (i.e., in the absence of the 
fluid) can be obtained by setting the density of the fluid to 
zero. Finally, in the numerical illustrations, we shall be con
centrating on equiaxial-grain-type structures and columnar 
dendritic formations that occur in centrifugally-cast stainless 
steel as representative of transversely isotropic media. 

Material State Possibilities 

Let us consider some possible configurations of CCSS 
material grain and anisotropic states as representative ex
amples of the classes of materials under consideration. These 
are depicted in Fig. 1 and range from a uniform vertical co
lumnar structure representing transverse isotropy to a uniform 
lateral columnar grain state. We can also have small or large-
grain equiaxial configurations. Another situation that has 
been observed is associated with a two-phase material state as 
shown in Fig. 1 (e) having a columnar material located over an 
equiaxial configuration, with the transition being approx
imately halfway through the thickness of the material layer. 
These unusual grain formations come about as a result of the 
manufacturing procedure. The last diagram shows a possible, 
mixed state that could actually occur but will not be pursued 
any further in this study, however. Our goal in this work is to 
demonstrate the characterization of the material state in order 
to optimize inspection procedure. 

Theory 

In this section we derive an analytical expression for the 
characteristic equation of surface wave propagation along an 
isotropic plate in contact with a transversely-isotropic space of 
similar or different material on one face and fluid on the 
other. The plane of isotropy for both the plate and the 
substrate are chosen to coincide with the plane of the 
interface. 

Consider a transversely-isotropic plate having the thickness 
d rigidly attached to a transversely-isotropic solid half space of 
similar or different material and separating the latter from a 
fluid half space. The problem is to study the characteristics of 
the surface wave propagating along the plate-fluid interface. 
In order to facilitate the present analysis, we shall use a two-
dimensional coordinate system (x,, i= l ,2 ) , which has its 
origin at the substrate-plate interface such that xx denotes the 
propagation direction and x2 is normal to the interface. The 
layer will thus occupy the space 0 < x2 :£ d. 

With this choice of coordinate system it is consistent that all 
motions will be independent of the x} -direction and the rele
vant elastodynamic equations for each solid (including the 
layer and the substrate) consist of the momentum equations: 

,=puh ij =1,2 (1) 

and the constitutive relations 

°ij=cUkieki, i J,k,l= 1,2 (2) 

specialized to transversely-isotropic materials. Here, ay are 
the components of the stress tensor, «,- are the components of 
the displacements, and p and ciJki are the density and elastic 
constants of each material. Due to the absence of viscosity in 
the fluid, its relevant field equations corresponding to equa
tions (1) and (2) can be obtained by appropriate specialization. 

Equations (1) and (2) must be supplemented with the ap
propriate interfacial continuity conditions. For rigid bonding 
between the plate and substrate these are: 

oa = aH),ul = u^,i=l,2 (3) 

at x2 = 0. Here the superscript (s) designates the substrate, 
whereas the layer is identified by omission of an adscript. 
Finally, at the fluid-plate interface, the appropriate matching 
conditions are 

" 12 = °. <*22 = °$ > "2 = "2OT at x2 = d. (4) 

If equations (1) and (2) are combined into two coupled 
equations in ux and u2, a solution in the form 

lq(xi +ax2-ct) 
(M1,«2) = ( I / i .^2 )e (5) 

is assumed where U{ and U2 are constant amplitudes, q is the 
wave number, c is the phase velocity, and a is the ratio of the 
x2 and Xi-directions wave numbers; one obtains a 
characteristic equation relating a to q. This equation admits 
four solutions and, by using superposition, one obtains the 
formal solutions 

(6) 

which holds for the layer, substrate, and even the fluid under 
appropriate restrictions. Here 

" l 

"2 
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*12 J 

= 
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^ 1 

^ 1 1 
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and, for each ap, p= 1, 2, 3, 4, 

(Id) 

(lb) 

(7c) 

(Id) 

U-ip 
pc2-Cn-C66a

2 

(Cl2 + C66)ap 
om„=(Jm„/iq\ m,n = \,2 
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Dip = (C12 + C22ap Wp ),D2p = C66(ap + Wp). (8) 

Equation (6), for the layer, can be used to relate the 
displacements and stresses at x2 = 0 to those at x2 = d. This can 
be done by specializing (6) to x2 = 0 and to x2 = d, and 
eliminating the common amplitude column made up of Uu, 
Ul2, Ul3, and Uu resulting in 

" I 

" 2 

* 2 2 

L &12 J 

where 

[a,j] = 

On 
"21 
«31 

«4L 

«12 

«22 

«32 

«42 

fl13 

«23 

«33 

«43 

«14 

«24 

«34 
«44 J 

" l 

" 2 
CT22 

L °u x2=0 

(9) 

£ 
U, 
A 
A 

! 
*, 
#, 
5 , 

r i 

5 2 
U22B2 

DnB2 
D22B2 

1 
^21 t/22 
Dn Dn 

L ^ 2 1 # 2 2 

£3 
U2iB3 

Dl3B3 
D23B3 

1 

t/23 

A3 
# 2 3 

^ 4 

^24*4 
Dl4B4 
D24B4 

1 1 
t/74 
^ 1 4 
^ 2 4 ^ 

(10«) 

B„=e'«V,(P = 1,2,3,4). (\0b) 

Now, in order to satisfy the continuity conditions (3) and (4) at 
the substrate-plate and the plate-fluid interfaces, respectively, 
we need to solve the field equation in the substrate and in the 
fluid. By inspection, such solutions can be deduced and 
specialized from the formal solution (6). First, due to the 
absence of shear deformation, specializing (6) to the fluid half 
space and insuring boundedness for large values of x2 yields 

U2W 

°22 

where 

1 1 

PfC- pf U^e 

0 

-iqafX2-

a} = (c2/c})-l, 

next, specializing (6) to the substrate yields 

(lift) 

,<*>» 
w,<*> • 

H2<s> 

»i!» \ 

= 

" 1 1 1 1 " 

u2i u22 u23 u24 

A i Dn Di3 Du 

_ D2l D22 D23 D24 _ s 

-U[f emi Xl 1 

0 

0 

(12) 

Notice that in equation (12) the reflected wave amplitudes U$ 
and U$ vanish, since solutions must be bounded for large 
values of x2 in the substrate half space. 

By specializing (11a) and (12) to the fluid-plate interface 
{x2 = d) and plate-substrate interface (x2 = 0), respectively, and 
followed by invoking the continuity conditions (3) and (4), 
their results 

« / . 

PjC1 

0 

- « / 

PjC1 

0 

0 

UU) 

i?2i 

* 3 1 

R4l 

R2 

R* 

lRv] = lau][bv], (14) 

with [bjj]s as the 4x4 matrix in equation (12). For nontrivial 
solutions, the matrix equation (13) represents three equations 
in three unknowns. It can be solved to yield the surface wave 
characteristic equation 

G31 + QG21=0 (15) 

where 

G2l=R2lR43~R23R4U G3l=R3lR43-R33R4l, Q = ̂ ~. (16) 
af 

In the absence of the fluid, i.e., for pfv = 0, equation (15) 
reduces to 

G „ = 0 , (17) 

which defines the characteristic equation for the Rayleigh sur
face wave on the dry plate bonded to a semi-infinite solid 
substrate. 

For a given real frequency oi, the real wave number solu
tions g = gr of equation (17) define propagating Rayleigh sur
face modes. It is important to indicate that in the absence of 
the plate, only a single real solution will exist. This will be the 
classical surface wave mode which propagates on a half space. 
In the presence of the liquid these real wave numbers will be 
perturbed rather mildy and become complex. This statement is 
confirmed by equation (15), which in general admits the com
plex solutions 

q = qr + ii). (18) 

From equation (18) the phase velocity is given as cp = w/qr and 
T) is the energy leakage coefficient. Notice that 17 vanishes in 
the absence of the fluid and, hence, no attenuation (leaking of 
energy in the fluid) occurs. Therefore, in the presence of the 
fluid, these surface wave are called leaky waves. It is also 
known that cp is hardly affected by the presence of the fluid 
(see Nayfeh et al., 1981). 

(11a) Results of Numerical Simulation 

For a numerical simulation of the situations that might oc
cur in realistic structures such as centrifugally-cast stainless 
steel (CCSS), we have chosen three types of material proper
ties. The first case, corresponding to the equiaxial CCSS, was 
assumed to be an isotropic one. The second and third cases 
were chosen as transversely isotropic, corresponding to the 
columnar CCSS with different degree of anisotropy. These 
latter materials are described by five independent elastic con
stants. Which are given in Table 1 along with the properties 
for the isotropic case. 

Our calculations were carried out using combinations of the 
three kinds of CCSS. As was implied by the theoretical model 
for materials described by Cases II and III, the appropriate in
terfaces between the water and the layer or the layer and the 

Table 1 Elastic Constants (in GPa) (for three different cases 
of CCSS) 

- I/lf> -

. UW J 

(13) 

c„ 
C22 
C33 
<-12 

C23 
C44 

where 

Case I 
(equiaxial) 

269 
269 
269 
103 
103 
103 
83 
83 
83 

Case II 
(columnar I) 

282 
242 
282 
140 
100 
140 
135 
91 

135 

Case III 
(columnar II) 

282 
262 
282 
76 
56 
76 

135 
113 
135 
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Fig. 2 Dispersion curve for the first mode of surface waves pro
pagating In a layered structure consisting of the upper layer from 
material I and the substrate: (a) from material II; (b) from material III. 
Four ratios or wavelengths to thickness of layer are marked additionally. 
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Fig. 4 Dispersion curve for the first mode of surface waves pro
pagating in a layered structure consisting of the upper layer from 
material III and the substrate: (a) from material I; (b) from material II. 
Four ratios of wavelengths to thickness of layer are marked additionally. 

° t T2 T 
7=6.0 7=2.0 7= i.o 7 = 0.5 fd (MHz.mm) 
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7=6.o 7=2.0 Y=i.o 7 = 0 5 f d (MHz.mm) 

Fig. 3 Dispersion curve for the first mode of surface waves pro
pagating in a layered structure consisting of the upper layer from 
material II and the substrate: (a) from material I; (b) from material III. 
Four ratios of wavelength to thickness of layer are marked additionally. 

substrate are assumed to be in the plane of isotropy. Both vec
tors of anisotropy for each case of columnar CCSS were 
oriented normally to the wave propagation direction. In Figs. 
2, 3, and 4, the dispersion curves of the first modes for the six 
possible material combinations are given. 

These figures illustrate the relationships between the surface 
wave velocity and the product of frequency and layer 

Table 2 Surface Wave Velocities (m/s) upper equiaxial layer 
Wavelength to thickness of layer ratio y = (\/d) 

Case I over I 
Case I over II 
Case I over III 

2976 
2976 
2977 

2976 
2978 
2989 

2976 
3012 
3129 

2976 
3157 
3450 

Table 3 Surface Wave Velocities (m/s) upper columnar layer 
Wavelength to thickness of layer ratio y = (X/d) 

0.5 1.0 2.0 6.0 

Case II over II 
Case II over I 
Case II over III 

3145 
3145 
3145 

3145 
3133 
3153 

3145 
3176 
3288 

3145 
2971 
3415 

thickness. There are additionally marked the four values oi 
the ratios of the surface wave wavelengths to layer thickness. 
It gives us some idea on how large the wavelength of the pro
pagating surface wave should be with respect to the thickness 
of the layer in order to observe the differences in velocity 
related to the inhomogeneity generated by the layer thickness. 
The results of the surface wave velocity calculation for these 
four ratios are contained in Tables 2 and 3. Note that for small 
values of these ratios, the surface wave velocity is equal to the 
velocity appropriate for the material of the upper layer. For 
ratios larger than six, velocities are almost the same as for the 
substrate. When the materials of both layer and substrate are 
identical, the nondispersive case results where the surface 
wave velocity is frequency independent. This was confirmed 
both analytically and numerically. These conclusions also 
serve here as a check on our computations. In Tables 2 and 3 
numerical values are listed Case I over II (as the layer), I over 
III, II over I, and II over III. When the wavelength X is in
creased, that is becoming greater than twice the thickness of 
the plate d, the wave velocity changes significantly (here a 5-10 
percent change for such situations are significant). These 
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results indicate how the wave velocity and its dependence on 
wavelength can be used to distinguish inhomogeneous 
character with depth. 

References 
Atalar, A., 1983, "Reflections of Ultrasonic Waves at Liquid-Cubic-Solid In

terface," J. Acoust. Soc. Am., Vol. 73, pp. 435-440. 
Chimenti, D.E.,Nayfeh, A. H., and Butler, D. L., 1982, "Leaky Waves on a 

Layered-Half-Space," J. Appl. Phys., Vol. 53, pp. 170-176. 
Curtis, G. T., and Ibrahim, N., 1981, "Texture Studies of Austenitic Weld 

Metal Using Elastic Surface Wave," Metal. Sci., Vol. 15, pp. 566-573. 
Delsanto, P. P., and Clark, A. V., Jr., 1987, "Rayleigh Wave Propagation in 

Deformed Orthotropic Materials," J. Acoustic. Soc. Am., Vol. 81, No. 4, pp. 
952-960. 

Hirao, M., et al., 1987, "Anisotropy Measured with Shear and Rayleigh 
Waves in Rolled Plates," Ultrasonics, Vol. 25, pp. 107-111. 

Jeong, P., 1987, "Ultrasonic Characterization of Centrifugally Cast Stainless 
Steel," EPRI NP-5246. 

Kaibichev, I. A., 1987, "Dispersion Relation for Rayleigh Waves in a 

Readers of. 
The Journal of Applied Mechanics 
Will Be Interested In: 

CED-Vol. 3 

Analytical and Computational Models of Shells 
Editors: A.K. Noor, T. Belytschko & J.C. Simo 

This volume documents the strides in a number of aspects of the theory, analysis, and 
computational modeling of shells and gives an indication of the state of practice in industry. 
Areas addressed include mathematical and analytical methods; new formulations and element 
development; computational strategies and modeling techniques; and applications to practical 
problems and experimental techniques. 

1989 Order No. H00516 ISBN 0-7918-0373-2 640 pp. 
$95 List/ $76 ASME Members 

To order, write ASME Order Department, 22 Law Drive, Box 2300, Fairfield, NJ 07007-2300 
or call 1-800-THE-ASME (843-2763) or FAX 1-201-882-1717. 

Medium with Subsurface Inhomogeneities," Sov. Phys. Acost., Vol. 32, No. 5, 
pp. 430-432. 

Kupperman, D. S., Reimann, K. J., and Abrego-Lopez, J., 1987, "Ultrasonic 
NDE of Cast Stainless Steel," NDTInternational, Vol. 20, No. 3. 

Mase, C. T., 1987, "Rayleigh Wave Speeds in Transversely Isotropic 
Materials," J. Acoust. Soc. Am., Vol. 81, No. 5', pp. 1441-1446. 

Nayfeh, A. H., Chimenti, D. E., Adler, L., and Crane, R. L. 1981, "The In
fluence of Thin Bonding Layers on the Waves at Liquid-Solid Interfaces," J. 
Appl. Phys., Vol. 52, p. 4985. 

Ogilvy, J. A., 1986, "Ultrasonic Beam Profiles and Beam Propagation in an 
Austenitic Weld Using a Theoretical Ray Tracing Model," Ultrasonics, Vol. 24. 

Rose, J. L., et al., 1988, "Wave Scattering and Guided Wave Considerations 
in Anisotropic Media," Review of Progress in Quantitative NDE, D. O. 
Thompson and D. E. Chimenti, eds., Vol. 7. 

Rose, J. L., Tverdokhlebov, A., and Balasubramaniam, K., "A Numerical 
Integration Ultrasonic Wave Scattering Model," JNDE, in press. 

Royer, D. and Dieulesant, E., 1984, "Rayleigh Wave Velocity and Displace
ment in Orthotropic, Tetrogonal, Hexagonal and Cubic Crystals," J. Acoust. 
Soc. Am., Vol. 76, No. 5, pp. 1438-1444. 

Sayers, C. M., 1982, "Ultrasonic Velocities in Anisotropic Polycrystalline 
Aggregates," J. Phys. D. Appl. Phys., Vol. 15, pp. 2157-2167. 

Silk, M. G., 1981, "Relationships Between Metallurgical Texture and 
Ultrasonic Propagation," Metal. Sci., Vol. 15, pp. 559-565. 

Journal of Applied Mechanics MARCH 1990, Vol. 57/11 

Downloaded 03 May 2010 to 171.66.16.244. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



J. J. Dike1 

Assoc. Mem., ASME 

G. C. Johnson 
Assoc. Mem., ASME 

Department of Mechanical Engineering, 
University of California, 

Berkeley, CA 94720 

Residual Stress Determination 
Using Acoustoelasticity 
A technique for the complete nondestructive evaluation of plane states of residual 
stress is presented. This technique is based on the acoustoelastic effect in which the 
presence of the residual stress causes a shift in the speed at which a wave propagates 
through the material. The particular acoustoelastic technique considered here em
ploys longitudinal waves propagating normal to the plane of the stress. Such waves 
experience a shift in propagation speed which, for an isotropic material, is pro
portional to the sum of the principal stresses. A Poisson 's equation for the in-plane 
shear stress is obtained from the two-dimensional equilibrium equations in which 
the forcing function is obtained directly from the measured velocity variations. Once 
this equation is integrated for the shear stress, the normal stresses may be evaluated 
directly from the equilibrium equations. In this paper, the basic equations are derived 
for the case of an anisotropic material. The experimental and numerical procedures 
are reviewed, and results of residual stresses in an aluminum ring are presented. 

Introduction 
Experimental methods for the determination of residual 

stresses in structural components have been the focus of con
siderable attention through the past several decades. A widely 
used class of techniques involves either destructive (parting 
and sectioning techniques) or semi-destructive (blind-hole drill
ing) methods. In addition to leaving the part examined unfit 
for service, these techniques require substantial expertise and 
are fairly costly to perform. A range of nondestructive tech
niques for stress evaluation have also been developed. One 
major technique involves diffraction of X-ray or neutron beams 
as a method of determining the strain on a particular lattice 
plane of the material. The physics of these processes is well 
understood and both diffraction techniques are capable of 
good spatial resolution, although the X-ray technique is limited 
to measuring the stresses near the surface. Neutrons are more 
deeply penetrating, but require the presence of a high flux 
reactor. Thus, there are relatively few facilities that can per
form stress evaluation from neutron diffraction measurements. 

An alternate nondestructive technique, acoustoelasticity, in
volves the measurement of the variation of speeds of ultrasonic 
waves caused by the presence of the stress field. Within the 
broad heading of acoustoelasticity, there are a range of dif
ferent methods that have been considered, all of which are 
limited to the evaluation of plane states of stress. In this paper, 
attention is focused on this planar case. For the purposes of 
this introductory section, we also restrict attention to materials 
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94550. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
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itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received and accepted 
by the ASME Applied Mechanics Division, December 1, 1988. 

which are initially isotropic. The most common acoustoelastic 
technique is called the birefringence technique (Hsu, 1974; 
Fukuokaetal., 1983; Pao etal., 1984). This technique is based 
on the fact that the difference in the speeds at which two shear 
waves propagating normal to the plane of stress, but polarized 
in the principal stress directions, is proportional to the dif
ference in the principal stresses. The constant of proportion
ality is a material constant (called the acoustoelastic constant 
for birefringence). Another technique, which is currently re
ceiving considerable attention, involves the difference in the 
speeds of two SH waves propagating in one principal direction 
and polarized in the other (King and Fortunko, 1983; Thomp
son et al., 1986; Man and Lu, 1987). In this case, the difference 
in the square of the SH wave speeds is equal to the difference 
in principal stresses divided by the material's mass density. 
There is no acoustoelastic constant which must be determined 
a priori for the SH wave technique. A third technique, called 
the longitudinal wave technique, involves the change in the 
speed of a longitudinal wave traveling in the direction normal 
to the plane of the stress (Kino et al., 1979). This technique, 
like the birefringence technique, requires that the acousto
elastic constant be known in advance. 

Each of the three acoustoelastic techniques discussed in the 
previous paragraph has certain advantages and disadvantages. 
A clear advantage of the SH wave technique is the absence of 
an acoustoelastic constant whose uncertainty affects the pre
cision of the resulting stresses. The birefringence technique has 
an advantage in that there is a relatively larger velocity variation 
per unit stress than in either of the other techniques. The 
advantage of the longitudinal wave technique is the ease with 
which measurements can be made over a large region of a 
sample, and the spatial resolution which can be achieved. As 
will be shown later in this paper, all of the techniques use 
relative measurements (as opposed to absolute measurements) 
of velocity variation. 

The remainder of this paper addresses the application of the 
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longitudinal wave technique to evaluating the residual stress 
state throughout a sample. A recent analytical development 
has made it possible to estimate the complete residual stress 
state (both normal and shear stress components) everywhere 
in a planar structure (Johnson and Dike, 1988). Neither of the 
other acoustoelastic techniques have yet to be demonstrated 
as having the capability for such whole-field stress determi
nation. 

In the next section, the basic theory is presented for the 
stress evaluation from measurements of variations in longi
tudinal wave speeds. While the technique should provide exact 
results for the case of an isotropic material (given perfect data), 
we consider also the more realistic case of a material which 
exhibits acoustoelastic anisotropy. Experimental considera
tions are presented in Section 3, where we provide new equa
tions for the exact determination of spatial velocity variations 
from measurements of variations in time-of-flight and sample 
thickness. Section 4 presents certain numerical considerations 
which must be taken into account in solving the system of 
equations given the limitations of the measured data. It is 
shown here that the technique for dealing with the anisotropy 
provides the correct stress solution, even for rather extreme 
cases of anisotropy. Finally, experimental results for the re
sidual stresses in an aluminum ring are presented and compared 
with numerical estimates of the stress state. It is shown that 
both the spatial variations and the magnitudes of the experi
mental and numerical estimates are in good agreement. 

Theoretical Basis 
Consider a body subject to a plane state of residual stress, 

with cartesian components a^, oyy, and axy, and a longitudinal 
wave propagating in the direction normal to the plane. The 
material in question is taken to be initially homogeneous and 
acoustoelastically orthotropic, so that the shift in the speed V 
of this longitudinal wave from the speed V0 in the unstressed 
material is (King and Fortunko, 1983; Johnson and Mase, 
1984) 

V-Vn — AyOy- Ayay, (1) 

where Ax and Ay are the acoustoelastic constants, which may 
be different for an anisotropic material. An alternate form of 
this equation, which may be more revealing in terms of the 
eventual stress evaluation, is 

V-V, 

where 

- = A+(<!,„ +Oyy) + A.ia^-a^), (2) 

A+ = Vi(Ax+Ay), A_ = Vi(Ax-Ay). (3) 

Note that for a material which is acoustoelastically isotropic, 
A- = 0 and the change in wave speed from the unstressed 
state is proportional to the sum of the in-plane normal stresses. 
In most engineering materials, the magnitude of A+ is con
siderably greater than that of A _, so that the material can 
often be considered as being "slightly anisotropic." Although 
we do not impose a condition of such slight anisotropy, we 
do assume that \A+\ > \A_\ and that the values of the 
acoustoelastic constants are known. 

The equilibrium equations for the residual stress field in the 
absence of body forces are 

K~r Gxy>y U, 

= 0, 
(4) 

where comma denotes partial differentiation with respect to 
the indicated coordinate. An equation for the shear stress <jxy 

in terms of the normal stresses may be obtained by differen
tiating equation (4)[ with respect to y and equation (4)2 with 
respect to x, and adding. Thus, 

V 2<Jxy = - (o•„ + ayy) ,xy, (5) 

where V2 is the two-dimensional Laplace operator. Equation 
(5) is a Poisson's equation for the shear stress in terms of 
derivatives of the sum of the normal stresses. 

If an accurate estimate of the sum of the normal stresses 
can be obtained from acoustoelastic measurements, then equa
tions (4) and (5) can be solved for the entire field in the body. 
If A_ = 0 (acoustoelastic isotropy), the right-hand side of 
equation (5) is directly related to the acoustoelastic measure
ments. Let us .now focus attention on the problem posed by 
a material which is acoustoelastically anisotropic. 

In order to find a solution for the shear stress by integration 
of equation (5), the values of axy along the boundary must be 
known. Because the stresses are residual, the boundaries are 
taken to be traction-free. Consider a point on the boundary 
with outward unit normal vector n which makes an angle 9 
with the x-axis. The stress tensor at this point may be expressed 
either in terms of the cartesian {x-y) components used, or in 
terms of normal-tangential (n-f) components, a„„, a„, and ant, 
which are related to the cartesian components as 

CT„„ = <TX;CCOS20 + ayy%m2Q + <7j,,sin29 

a„ = ff„sin2G + cr),J,cos29 - cr^sin29 (6) 
ant ~ '/2 (Cyy — Oxx)sin2Q + ff^COs29. 

In the case considered here, the only nonvanishing stress com
ponent in normal-tangential coordinates is a„. Thus, the carte
sian components are expressed in terms of a„ as 

tf;o- = 0«sin29, (ryy=a,tcos2Q, axy= - Via„sm2Q. (7) 

In light of equation (1), the velocity change from the unstressed 
state is related to the tangential component of stress as 

V-V„ 
a„ (A ̂ sin29 + A xos2G). (8) 

Assuming that measurements of velocity change can be made 
along the boundary and that the geometry of the boundary 
(9) is known, the shear stress axy can be determined through 
equations (7)3 and (8). 

Unfortunately, because the material is not isotropic, we can
not obtain the right-hand side of equation (5) directly from 
the measurements. Instead, we propose to use an iterative 
scheme in which the velocity data is used to provide an estimate 
of axx + ayy which is updated at the end of each step of the 
iteration. Specifically, the initial estimate of the sum of the 
stresses is obtained by letting A _ be zero in equation (2). The 
boundary values for axy and this initial guess are used to solve 
for the shear stress throughout the sample. The equilibrium 
equations are then used to estimate the normal stresses. At 
this point, we have estimates of am ayy, and axy which are not 
consistent with equation (2). However, by using these estimates 
and the actual value of A _, we obtain at the end of each step 
of the iteration, a new estimate of the sum of the stresses 
through the equation 

(0xx+0yy)n+\ J_ V-Vn 
- A _ (o„ — ayy)„ (9) 

where the subscripts "n" and "n+l" refer to the iteration 
steps involved. It is shown later that this scheme converges for 
synthetic data to the actual stress field, even for fairly extreme 
levels of anisotropy. 

Experimental Procedures 
The algorithm presented in the preceding section assumes 

that sufficiently precise estimates of the velocity shift with 
stress can be experimentally determined. Velocity is not, how
ever, a directly measurable quantity. Further, we would like 

Journal of Applied Mechanics MARCH 1990, Vol. 57/13 

Downloaded 03 May 2010 to 171.66.16.244. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



to be able to evaluate the residual stress state without prior 
knowledge of the unstressed velocity V0. We show in this sec
tion that the use of two scans, which provide spatial variations 
in the time-of-flight and path length of the longitudinal waves, 
are sufficient to obtain the necessary velocity shift. 

It is important to recognize that there are two types of 
variations or shifts involved in the experimental work. We 
refer to these as configurational variations and spatial varia
tions. For the velocities, these variations are associated with 
the following definitions: 

AV/V0 is the configurational velocity change. It is the 
relative velocity change between the final (stressed) and 
initial (unstressed) configurations, at the same point. 

8V/V is the spatial velocity variation. It is the relative 
velocity difference between two points in the final con
figuration. 

The configurational velocity change is the quantity which is 
needed for the stress evaluation, while spatial variations of the 
thickness and time-of-flight are actually measured. 

In keeping with our previous usage, we let a subscript o 
denote quantities associated with the initial (unstressed) con
figuration. Symbols written without a subscript are taken to 
represent quantities in the final (stressed) configuration. In 
order to discuss the spatial variation of a quantity, we let X 
denote any generic material point, and Xr denote a specific 
reference point. Thus, the velocities in the initial configuration 
would be written V0(X) = V0(Xr) = V0, while the velocities 
in the final configuration would be written V(X) and V(Xr), 
where these two velocities would, in general, be different. For 
simplicity, we often omit the argument X for the generic ma
terial point (so that V(X) would be written simply as V). 

The configurational velocity change is then just 

AV V-Vo 

Vo 

while the spatial variation is expressed as 

8V 

V 

V- V(Xr) 

V(Xr) 

(10) 

(11) 

The measurements made are of two types: spatial varia
tions of the time-of-flight of the longitudinal wave and spatial 
variations of the thickness of the sample (which is the path 
length of the wave). The system used for the time-of-flight 
variations is a slight modification of the double-pulse overlap 
system described by Ilic et al. (1979). In this system, a single 
transducer operates in a water-bath and is excited by two rf 
tone bursts which are timed so that the first echo caused by 
the second pulse and the second echo caused by the first pulse 
return to the transducer at the same time. Both tone bursts 
are operated at the same carrier frequency (typically around 
10 MHz) which can be adjusted to provide a particular phase 
delay between the two overlapping echoes. By using the analog 
phase-lock loop described by Ilic et al. (1979), this phase delay 
can be held constant as the time-of-flight changes due to changes 
in the wave speed and sample thickness. The condition at which 
such a phase condition is achieved is called a "null" and the 
associated frequency is denoted/ r , with the subscript indicating 
that this frequency is related to the time-of-flight. 

The system used for the measurement of thickness variation 
is the two-transducer system proposed by Fisher and Johnson 
(1984). The two transducers are collinear and are mounted 
pointing directly at one another on a "rigid" fixture. The 
sample is placed between the transducers with its major sur
faces normal to the axis of the transducers. The fixed distance 
between the transducers is L, while the distance from each 
transducer to the nearest face of the sample is lx or l2. Each 

transducer is excited by a single rf tone burst. If we consider 
only the first echo returning to each transducer, the total phase 
delay for each wave is 

<Pi = 
2fdl: 1,2 (12) 

where fd is the carrier frequency of the tone bursts and Vw is 
the speed at which the waves travel in the water. Adding the 
two phases, and noting that L = l\ + l2 + d, gives 

* = <Px + <Pi = ^ (/i + h) = %r (L-d). (13) 
' w *w 

This phase sum can be held constant for changing thickness 
by varying the frequency fd. Thus, if V„ is taken to be a 
constant, the variation in thickness can be related to the var
iation in frequency through the relation 

8d 

d 
1 + fa 

fd 

L-dr8fd 

dr fd 

= 0, (14) 

where the symbol 8 is used to denote the spatial nature of the 
variations, and dr is the thickness of the sample at Xr. We note 
that this expression is exact, while the associated relation given 
by Fisher and Johnson (1984) ignores the term which is non
linear in the variations. 

Given this method for determining the spatial thickness var
iation, let us return to the single transducer system. The phase 
delay <p between the two echoes may be written as the product 
of the frequency and the time-of-flight. Alternatively, the time-
of-flight may be eliminated in favor of the thickness and ve
locity, so that the phase delay becomes 

<P = 
Vrd 

(15) 

Since <p is held constant at a particular null, the spatial velocity 
variation is related to the spatial variations in null frequency 
and thickness as 

8V 

V 

_ 8d far 

ST 

8d8fr 

d ST ' 
(16) 

where this expression is again exact. 
The importance of retaining the exact expressions in equa

tions (14) and (16) is clear when the acoustoelastic constants 
of the material being investigated are small. In such cases the 
maximum velocity change may be on the order of 0.1 percent, 
while the variations in thickness and null frequency may be 
much larger (on the order of several percent) and of the op
posite sign. The terms which are nonlinear in the variations in 
these equations may then contribute substantially to the re
sulting velocity variation. 

We now have a method with which to determine the spatial 
variation in the velocity, but in fact need the configurational 
variation in order to evaluate the stresses. To obtain this latter 
variation, we make use of the fact that the residual stress field 
must be self-equilibrating. Specifically, the volume integrals 
of the normal stress components over the entire region must 
vanish. Since we are dealing with the case of plane stress, these 
integrals over the volumes can be replaced by integrals over 
the surface of the sample. Given equations (1) or (2), the 
vanishing of these surface integrals then requires that the in
tegral of the configurational velocity change over the sample 
must be zero. 

Let us now consider the relation between the configurational 
and spatial variations of velocity. Equation (11) may be ex
panded as 

bV 

V 

V(X) - V0 V(Xr) - V0 vn 
V{Xr) V(Xr) V(Xr) 

AV 

vn 
(17) 
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Fig. 1 Electronic block diagram for the two-transducer thickness scan
ning system. The device abbreviations are: CW = frequency-modulated 
continuous wave generator, PS = power splitter, PA = power amplifier, 
HPF = high-pass filter, RA = receiving amplifier, FD = frequency 
doubler, REF = low frequency reference square wave source, and INT 
= integrator. 

where C is the configurational velocity change at the reference 
point and will be treated as a constant. The ratio of initial 
velocity to final velocity at the reference point is taken to be 
small (almost always less than one percent) so that equation 
(17) may be rewritten as 

AV 
V, 

- = ^ + C . (18) 

Since the integral of the left-hand side of equation (18) must 
be zero, the constant C may be determined from the integral 
of the spatial variation over the surface area E as 

C= 
f bV 
J V dL. (19) 

Thus, the measurement of the spatial variations is sufficient 
to provide the necessary configurational data. 

The electronic system used for the single transducer meas
urements is essentially that described by Ilic et al. (1979). The 
electronic system for the two-transducer system is similar, al
though the analog signal processing is somewhat different. A 
schematic diagram of the system used for the thickness scans 
is shown in Fig. 1. In order to isolate $, the sum of the 
individual phases, the rf tone burst which drives one of the 
transducers, say the second one, is modulated by a low fre
quency signal. Thus, the returning pulses /•„ / = 1,2, are of 
the form 

r]=BJcos(oidt + <p]), r2 = B2cos(o>dt + <p2)cosQt, (20) 

where Bt are the waves' amplitudes, cod = 27r/rf, and fi is the 
frequency of the modulation, which is typically in the low 
kilohertz range. These two signals are electronically mixed and 
the result is filtered to isolate the second harmonic of the 
carrier. This component of the signal has the form 

r3 = 53cos(2o!d/+*)cosQ/. (21) 

This signal is then mixed with a continuous wave whose fre
quency is 2wd. The amplitude of the low frequency component 
of this final signal is proportional to cos*, 

r4 = B4cos$ costit. (22) 
Thus, when this signal is used as input to a lock-in amplifier 
whose reference frequency is Q, the output of the lock-in is a 
d-c signal proportional to cos$. This d-c signal is then inte
grated and the result is used to drive an FM modulator until 
the lock-in output reaches zero (a null condition). 

The present system uses commercially available 10 MHz, 
spherically-focused transducers with 50-mm (2-in.) focal 
lengths. In actually performing the scans for the thickness 
variation, we must choose the geometry of the transducer holder 
(spacing L) in recognition that there are two effects which 
compete with one another and which must be balanced. On 
the one hand, the use of distinct rf tone bursts for the phase 
comparison requires that the lengths /,• be sufficiently large, 
while on the other hand, large path lengths (large L) result in 
small frequency variations for a given thickness variation. 

Most of the measurements made to date have been on the 
samples that are approximately 10 mm thick with the sample 
surfaces between 25 and 40 mm from the transducers' faces. 
The result is somewhat poorer spatial resolution than would 
be expected if the transducers were operated at their focal 
lengths. If the transducers are used at their focal lengths, ad
jacent null frequencies are only 0.07 percent apart and the 
sensitivity of the thickness evaluation is poor. Thus, we can 
make measurements to within approximately 2 mm of the edge 
of the sample. Our current positioning system consists of two 
perpendicular lead screw stages driven by stepping motors, and 
has a nominal spatial resolution of 50 /im. When scans of the 
same region of a sample are repeated, it is found that the null 
frequencies for these systems have a repeatability of .005 per
cent over a 1-percent maximum variation, as determined by 
the RMS difference in the null frequencies over all points of 
the scans. 

Numerical Procedures 
The basic equations have been cast into a finite difference 

scheme for the solution of the residual stress field. For the 
present we have restricted attention to disks or annuli which 
are most conveniently described in plane polar coordinates. In 
this section we describe results obtained using synthetic velocity 
data generated from a known stress state. This numerical ex
ample does not use a residual stress state, but the requirement 
that the stresses be residual is not operative as long as the 
appropriate boundary values of oxy and the initial velocity V0 
are known. We demonstrate that the proposed procedure for 
stress evaluation in materials which exhibit anisotropic acous-
toelastic response converges, and that the solution is basically 
in agreement with the actual stress state. Experimental results 
for a residually stressed aluminum ring are presented in the 
following section. 

We consider for this example the stress state generated by 
the far-field tension of an infinite plate of elastically isotropic 
material containing a circular hole. We know the exact stress 
state in terms of components expressed in either polar or carte
sian coordinates. Our approach is to use the known normal 
stresses in equation (1) to generate the synthetic velocity var
iations given various choices of acoustoelastic constants. The 
known shear stresses axy along the edges of an annular region 
are used with the velocity variations to estimate the stress state 
in the interior of the annulus. 

Contours of the shear stress and the normal stress in the 
loading direction are shown in Fig. 2 for an annular region of 
the plate under a far-field tension of 100 MPa. The stresses 
displayed in Fig. 2 result from velocity data at discrete grid 
points within the interior of the region assuming that the ma
terial is acoustoelastically isotropic and that A+ = 10 TPa -1 

(typical of many aluminums). In the results shown, there are 
nine radial locations between the inner and outer boundaries, 
and the grid points are spaced at 5-deg intervals in the cir
cumferential direction. This is a rather coarse grid (only 153 
data points in the interior of the region), but it serves to show 
that the algorithm provides stress values which are everywhere 
within 1 MPa of the exact values. 

When the material is taken to be acoustoelastically aniso
tropic, the same stress state leads to a different velocity var-
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Fig. 2 Contours of (a) shear stress <rxyl and (b) normal stress cxx in an 
annular region of an infinite plate subject to far-field tension in the x-
direction of 100 MPa, obtained by numerically integrating equations (4) 
and (5) given synthetic velocity data at the grid points. Contour levels 
given in MPa. 

tained (a) experimentally and (b) numerically for a 6061-T6 aluminum ring 
subject to diametral compression and unloaded. Contour levels given 
in MPa. 

Table 1 Number of iterations required for convergence in 
anisotropic materials. In all cases, A + = lOTPa-1. 

A — Iterations 
1 
2 
4 
6 
8 
9 
10 

3 
4 
5 
7 
9 
11 
14 

iation. However, the same stress pattern emerges after the 
iterative process described above. Table 1 gives the number of 
iterations required to reduce the maximum stress difference 
between subsequent iterations to within 0.1 MPa for a range 
of different anisotropics. We find that the technique converges 
for all cases. In particular, the last case shown is an extreme 
case corresponding to Ax = 20 TPa~\ Ay - 0 TPa -1. 

Experimental Results 
An annulus of 6061-T6 aluminum, with nominal thickness 

of 12.7 mm, inside diameter of 38.1 mm, and outside diameter 
of 63.5 mm, was loaded in diametral compression until per
manently deformed and then completely unloaded. Loading 
was performed using ball-in-socket compression platens acting 
on flat regions which had been machined on the top and bottom 
of the annulus. One quadrant of the specimen was scanned 
over a 1 mm radial, 2.5 deg circumferential grid. Experimen
tally determined stress contours are compared with those es
timated by the NIKE2D finite element code (Hallquist, 1986). 

Because measurements cannot be made at the very edge of 
the sample, the interior measurements are extrapolated to ob
tain the boundary values of the stresses. The extrapolation 
procedure used for the results shown next involved a linear 
least-squares fit to the points near the boundary. The interior 
data is used where it is available, with extrapolated data used 
only where necessary. 

The contours of the sum of the residual normal stresses 
shown in Fig. 3 indicate generally good agreement between the 
experimental and numerical estimates. Note, in particular, the 
results of the two approaches for the zero contour (C). While 
the experimental contour is somewhat noisier than the nu
merical contour, the overall agreement indicates that the 
method for evaluating the constant C, and so the sum of 
stresses, is valid. The fact that the experimental contours are 
noisier than the numerical contours is to be expected due to 
the intrinsic uncertainty in the measurements. This noise is 
especially noticeable in the low-stress regions of the annulus. 
We also note that the contours generally have the correct shape 
and are properly located spatially. 

Figure 4 presents the experimental and numerical estimates 
of the shear stress oxy. Again, the zero-stress contour (E) has 
the same basic pattern throughout the region and is noisier in 
the experimental plot. The regions of positive and negative 
shear are in uniform agreement, though there are again certain 
regions within which the magnitudes are somewhat different. 
Under the corner of the flat at the top, for example, the ex
perimental contours accurately denote the stress concentration 
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Fig. 4 Contours of the residual shear stress vxy obtained (a) experi
mentally and (6) numerically for a 6061-T6 aluminum ring subject to 
diametral compression and unloaded. Contour levels given in MPa. 

A = - 4 0 0 
B = - 3 0 0 
C = - 2 0 0 
D = - 1 0 0 
E = 0 
P = 1 0 0 
G = 200 
H = 300 
I = 4 0 0 

Fig. 5 Contours of the residual normal stress axx obtained (a) experi
mentally and (/>) numerically for a 6061-T6 aluminum ring subject to 
diametral compression and unloaded. Contour levels given in MPa. 

at the edge of the flat, but overpredict the magnitude of the 
shear stress at this point. 

Figure 5 presents contours for the normal stress oxx, which 
is the hoop stress at the top of the sample. The region in which 
this stress component is small is accurately delineated and, as 
in the previous plots, the zero-stress contours agree reasonably 
well. The regions of tension and compression are in spatial 
agreement, though the magnitudes of the experimental esti
mates are slightly higher at the boundaries than are the nu
merical estimates. 

Extrapolation tends to be an inherently inaccurate process, 
and as noted previously, can cause difficulties at the bound
aries. It was found that while various extrapolation procedures 
yielded large differences in the values of stresses at the bound
ary, the interior values were affected very little. The larger the 
ratio of area where measured data is available to that where 
extrapolated values must be used, the better the results of this 
method can be expected to be. 
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Derivatives of Buckling Loads and 
Vibration Frequencies With 
Respect to Stiffness and Initial 
Strain Parameters 
A uniform variational approach to sensitivity analysis of vibration frequencies and 
bifurcation loads of nonlinear structures is developed. Two methods of calculating 
the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear 
structures, with respect to stiffness and initial strain parameters, are presented. A 
direct method requires calculation of derivatives of the prebuckling state with 
respect to these parameters. An adjoint method bypasses the need for these 
derivatives by using instead the strain field associated with the second-order post-
buckling state. An operator notation is used and the derivation is based on the prin
ciple of virtual work. The derivative computations are easily implemented in struc
tural analysis programs. This is demonstrated by examples using a general purpose, 
finite element program and a shell-of-revolution program. 

Introduction 

Sensitivity analysis provides methods for calculating the 
variation of structural response with respect to variations of 
structural parameters. These are useful for structural redesign 
and gradient-based structural optimization, as well as for 
parameter identification, imperfection sensitivity, and 
statistical structural analysis of geometric and material 
imperfections. 

The sensitivity of vibration frequencies and buckling loads 
to changes in structural stiffness has been treated both in the 
framework of calculus of variations (e.g., Haichang (1984)) 
and finite element analysis (e.g., Adelman and Haftka (1986)). 
Whereas calculation of sensitivity of natural frequencies is 
simple in that it requires only knowledge of vibration modes, 
(cf., Haichang (1984), Adelman and Haftka (1986)), this is not 
the case when buckling loads or vibration frequencies of load
ed structures are considered. The calculation then requires 
also the sensitivity of the prebuckling state. Because of com
putational cost and complexity, the effect of variation of 
prebuckling stresses is often neglected (cf., Khot (1981)). 

Mr6z and Haftka (1988) present an adjoint-structure ap
proach to the calculation of vibration frequency and buckling 
load variations of a plate due to variations in stiffness and 
initial-strain parameters. The use of the adjoint structure ob-
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viated the need to calculate the sensitivities of the prebuckling 
stresses. The purpose of the present paper is to generalize the 
procedure of Mroz and Haftka (1988) to more general struc
tures and nonlinear prebuckling behavior. The paper is based 
on the general method of sensitivity analysis of nonlinear 
structural behavior developed in Mroz et al. (1985), Mroz 
(1987), Szefer et al. (1988), and Barthelemy et al. (1989). A 
general operator notation previously used by Budiansky and 
Hutchinson (1964) and Cohen (1968) is employed and 
guarantees wide applicability of the results. This wide ap
plicability is demonstrated by examples obtained with a 
general purpose, finite element program EAL (Whetstone, 
1983) and a general shell-of-revolution program FASOR 
(Cohen, 1981). 

Vibration and Bifurcation Buckling Analysis 

We denote the generalized displacement, strain, and stress 
fields by u, e, and a. The strain-displacement relationship has 
the form 

e = Ll(u) + —-L2(u) (1) 

where Ll and L2 are first and second-degree homogeneous 
operators. For example, for a beam under lateral and axial 
loads, the generalized strain has one component of axial strain 
ex and one component of curvature K, U has components of ax
ial displacement ux and lateral displacement uz and equation 
(1) is written as 

Kx)2 

(2) 
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The variation of strain is specified in terms of displacement 
variation as 

Se = Li(Su) + Ln(u,5u) (3) 

where Lu is a symmetric bilinear operator, i.e., Ln(u, 
v) = Ln(v, u), defined by 

L2(u + v) = L2(u) + L2(v) + 2Ln(u, v). (4) 

In particular, equation (4) yields Lu(u, u) = L2(u). We assume 
a linear stress-strain law 

o = D(e-e') = Der (5) 

where a is the generalized stress tensor, D is the material stiff
ness tensor, and e ' is the initial strain (such as the initial strain 
generated by a temperature field). In our example of a beam 
under axial and lateral loads, the diagonal elements of D are 
the stretching and bending stiffnesses. 

The equations of equilibrium and static boundary condi
tions are obtained from the principle of virtual work as 

o'be = \q>bu (6) 

where a dot between two vector or tensor fields denotes the in
tegral of their inner product over the structural domain and X 
is a load amplitude parameter. Here the unit load vector q in
cludes conservative live loads and is given by 

q = qQ + ql(u) (7) 

where qt is a linear operator satisfying, for any two admissible 
displacement vectors u and v, the reciprocal relation 

ql(u)>v = ql(v)-u. (8) 

Consider now small, free harmonic vibrations with frequen
cy co superimposed on the equilibrium state u0, e0, a0 

associated with load level X0. We denote the vibration mode 
fields by ult ex, and a P They satisfy the following linear 
equations. 

« l = L l ( " l ) + ^ l l ( M 0 . " l ) 

<j, =De1 (9) 

a, '8e0 + o0'Ln(ul,5u)- \0q{(u{)-bu = o>2Mul -bu 

where M denotes the mass matrix and 

5€0 = L1(6«) + L11(u0,6u). (10) 

Setting bu = u{ in equation (9c), we obtain the Rayleigh quo
tient for the vibration frequency 

g^e, + o0>L2(ul)-\0ql(ul)-ui 

Mux'Ux 
(ID 

Under static loading the structure buckles at a load Xc cor
responding to the state u% = u0(\c), el = e0(Xc), al = o0(K)- The 
buckling load corresponds to a zero vibration frequency. 
Therefore, the buckling mode ult e,, CT, satisfies equations (9) 
with co = 0 and X0 = \c, u0 = ul, a0 = 0%. 

Direct Calculation of Sensitivities 

We consider now a parameter p variations of which can 
represent variations in the material stiffness matrix, the initial 
strain field, or both. That is 

(12) 
8D = Dpbp 

5e' = e'pbp 

where a subscript p indicates differentiation with respect to the 
parameter. We seek to determine the derivatives of the vibra
tion frequency and buckling load with respect top. We assume 
that the equilibrium state u0, e0, CT0 depends analytically on the 
design parameter p and the load parameter X. We also assume 
that the fundamental vibration frequency and buckling load 
represent nonrepeated eigenvalues, so that the eigenfields U\, 

e,, a, are unique up to a mulitplicative constant. Under these 
conditions the derivatives of the eigenfields, with respect to p, 
can be shown to exist. We start by differentiating equations (9) 
with respect to p and then substitute bu ~ u,; thus 

eip = -M"ip) + £u("oP . "i) + £u("o . «iP) 
°\p=Dptl+Dtlp 

°\P
me\+ °\'Ln(u0p,ul) + aQp*L2(u{) (13) 

+ o0>Ln(ulp,ul)-\0ql(.ulp)'Ul=(u,2)pMul'Ul 

+ 032MpU['Ul+032Mu[p'Ul. 

The derivatives of the vibration mode, aXp, ulp, can be 
eliminated from equation (13c) by first setting bu = ulp in 
equation (9c) to give 

< V [ - M " i p ) + £ n ( " o . «ip)l 
+ o0-Ln(ul,ulp)-\0ql(ul)-u[p = u,2Murulp (14) 

then subtracting equation (14) from equation (13c) and using 
equations (8), (13a) can (13 b) to get 

(<02)p 

Dpti'ti +2<r1«ZM1(Mop. «i) + "0,P'L2(ux)-u2M' M,«M - _ £ _ (15) 

Equation (15) contains derivatives of the static field u0, a0 

with respect to p. Equations for these can be obtained by dif
ferentiating equations (1), (5), and (6) at X = X0 to get 

e 0p=-M"op) + £ll(MO.WOp) 

a0p=Dpe
r
0 +Der

0p =Dp(e0 - e') + D(e0p - e'p) (16) 

"op'^o + o0-Ln(u0p,5u)-\0q1(u0p)-bu = (}. 

The derivative of a bifurcation buckling load is obtained 
from the condition that co2 =0 . As p changes Xc must change 
with it so that e?(w2) = 0. Thus 

d{o2) = {u2)pdp + (u2ydkt. = 0 (17) 

where prime denotes derivative with respect to X. From equa
tion (17), 

K c)p (co2)' 
(18) 

To calculate the derivative of the frequency with respect to the 
load parameter X, we start by differentiating equation (9) with 
respect to X and setting bu = w, 

e1'=L1(u1') + L11(Uo,M1) + L11(u0,u1 ') 

-De! (19) 

a{'ei+(7fLn(ui,u1) + ai'L2(.ul) + a0'Ln(u[,u1) 

- l\oqi(u{) + ql(ul)] 'Ui =(o>2)'Mul>ul +co2M«,'«w1. 

Next we eliminate the derivatives of the vibration field with 
respect to X by setting bu = u{ in equation (9c) 

°\'[Lx(u[) + Ln{u0,u[)] +a0'Ln(uuu{) 

-Xogi(Wi)*Mi' = u2Af«,«M1' (20) 

and then subtracting equation (20) from equation (19c) and 
using equations (8), (9b), (19a), and (19b) to get 

2 C T I * L H ( " O . « i ) + ffo*^2("i)-9i("i),"i 
( " 2 ) ' = -

Mu1-u1 

(21) 

Finally, substituting equations (15) and (21) evaluated at the 
buckling load into equation (18) gives 

(X ) = Dpei'ei+2ai'Ln{u^p,ui) + oip'L2{ui) 
C" 2 f f 1 - J L n (^* ,w 1 ) + ffo*'^2(«i)-^i("i),"i 

where the asterisk denotes prebuckling quantities evaluated at 
the buckling load. Note that the field u,, ax now denotes the 
zero-frequency or buckling mode. Here, the derivatives of the 
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prebuckling field with respect to A are required, as well as its 
derivatives with respect t o p (cf. equations (16)). Equations for 
these are obtained by differentiating equations (1), (5), and 
(6), with respect to X, to get 

eo=£i("o) + £ii("o>"o) 

oi=Dei (23) 

ai- 8e0 + o0'Lu(ul, 8u)-\0ql(ui)'8u = q->&u. 

These equations represent the tangent incremental problem 
along the fundamental equilibrium path, and equation (23c) is 
a weak formulation of incremental equilibrium. This transient 
solution is typically available in structural analysis programs 
as a by-product of the nonlinear solution strategy. 

Determination of Sensitivity by Adjoint Method 

The direct approach to sensitivity calculation requires the 
calculation of the sensitivities of the static field (prebuckling 
state), equation (16). This calculation can become expensive 
when we need sensitivities with respect to a large number of 
structural parameters. In that case an adjoint method that 
eliminates the need for static sensitivities is appropriate. 
Following Mroz and Haftka (1988) and Szefer et al. (1988), we 
introduce an adjoint field u2, e2, a2 satisfying 

€2=L1(u2) + Lu(u0,u2) 

°2 = D(e2 + —L2(u,)) = Der
2 (24) 

a2>8e0 + a0>Ln(u2, bu)~\0ql(u2)'8u 

+ ol*Lll(uu8u) = 0. 

Equations (24), the homogeneous form of which is identical to 
the buckling equations (equation (9) with <o = 0), may be 
thought of as the field equations of an "adjoint" or 
"tangent" structure for which the second term in parenthesis 
in equation (24b) is an initial strain term and the last term in 
equation (24c) corresponds to a body-force loading. For 
X0 = Xc, the adjoint field is identical to the second-order field 
generated in an asymptotic expansion of post-buckling 
response in the common case of symmetric bifurcation (i.e., 
when the first post-buckling coefficient a = 0) (cf., Cohen, 
1968). 

In view of equation (24), the second and third terms of the 
numerator of equation (15) can be transformed as follows 

A = 2ol-Lu(u0p,ul) + o0p-L2(ui) 

= 2al-Ln(u0p,u1) + 2a0p-(e
r
2- e2). (25) 

Setting 8u = u2 in equation (16c) we obtain 

<V e 2 + CTo*£ii("op> "2)-Mi("op)*«2 = 0 (26) 

so that we can rewrite equation (25) as 

A=2[ai-Ln(u0p,ul) + o0p'e
r
2 

+ cr0-Lu(u0p, u2)-\0qi(u0p)-u2]. (27) 

Next, we set 8u = u0p in equation (24c). In making this 
substitution as well as the above substitution of 8u = u2 in 
equation (16c), it is tacitly assumed that the prebuckling state 
satisfies the same kinematic constraints as the buckling or 
vibration mode. We then use (16a) to obtain 

< 7 2 , % + "0* Z ' l l ("2 ."0p) + O ' l ' ^ l l ( « 1 , " 0 p ) 

-\>?i(«2)'"o/, = 0, (28) 

and from equations (166) and (24b), 

o2'e0p=Der
2-i0p = (a0p+De'p-Dpe

r
0)'e2. (29) 

Using equations (8), (28), and (29), equation (27) becomes 

A = 2(Dpt
r
0-DepW2. (30) 

Hence, equations (15) and (22) become 

("2)P = 

and 

(Xc) „=-

Dpex •£, + 2(Dpe
r
0-Dep)>er

2-w
2Mpul»«, 

Mu, •«, 

Dpel>el+2(Dper0*-Dei
p).e

r
2 

2o{>Ln(ui* ,u{) + oi* 'L2(Ui) - qi(Ui)'"\ 

(31) 

(32) 

Equation (32) is based on the prebuckling state calculated at 
X0 = Xc. The usual practice, however, is to estimate the bifur
cation buckling load by solving a linearized eigenvalue prob
lem based on the prebuckling state at a load X0<XC. It is 
shown in the appendix that the error introduced in the 
derivative (\c)p due to such approximation is of the order of 
(Xc-X0)2 . 

Equation (32) can be specialized to the case of plate buck
ling under in-plane loads and temperature that is uniform 
through the thickness (Mroz and Haftka, 1988). In this case 
the L2 operator contains the terms (dw/dx)2, (dw/dy)2 and 
(dw/dx)(dw/dy) for the in-plane strains. The prebuckling 
response is then linear and ec consists of only in-plane com
ponents while a0 contains the membrane resultants Ny. The 
buckling mode, on the other hand, consists only of the normal 
displacement ve, so that Ln(u0, u^^O, and e, contains only 
the curvature tensor K,. Under these conditions equation (32) 
becomes 

D*K[.Kx+2(DA
pe

r
Q-DAep)-e2 

(K)P = (33) 

where D4 and DB denote the membrane and bending parts, 
respectively, of the plate wall stiffness matrix. Equation (33) is 
equivalent to equations (38) and (50) of Mroz and Haftka 
(1988) except that the adjoint strain field used in Mroz and 
Haftka (1988) is - 2 e 2 . 

Applications to Plane Frames 

The general expressions obtained in this paper can be 
specialized to the case of a plane frame with m members. The 
axial force N and bending moment M are the generalized 
stresses, and the axial strain ex and curvature K are the con
jugate generalized strains. For the sake of simpler notation, 
the lateral displacement in a frame member is denoted w in
stead of uz. The strain displacement relation, equations (2), is 
rewritten as 

• w , 

1 

o 
(34) 

Assuming no initial bending strains Hooke's law for a frame 
member, equation (5), is written as 

N=EA(ex-ex), M=EIK (35) 

where E, A, and / denote the Young's modulus, cross-
sectional area, and moment of inertia of a frame member (not 
necessarily the same for all members). The virtual work equa
tion (6) becomes 

2J (M8K + N8ex)dx=\q'8u (36) 

where /,• denotes the axial length of the /'th member. 
The load q is a combination of point and distributed forces. 

We assume that the mechanical and initial strain loading in
duce negligible bending in the frame, so that w0, K0, and M0 

are zero in all members. We consider small harmonic lateral 
vibrations of the frame with negligible member extension, so 
that the lateral displacements are given as 

Wi(x, t) = w{(x)coso}t (37) 
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S^JK 

I H 
Fig. 1 Beam geometry 

* M i 

* t2,T2 • 

Boundary conditions: Simply supported on 
all sides 

Material properties: Young's modulus E = 107 psi 
Poisson's ratio v = 0 
Coefficient of thermal expansion 
o = 1.3x10"5/T 

Nominal design: t-, = t2 = 0.05", T, = T2 = 0° 

Fig. 2 Geometry and loading of square plate 

for each member. The vibration eigenproblem, equation (9), 
becomes 

M{=EIKI 

X) (Ml8K + N0wUx8wiX)dx = u2Y^\ pAw^dwdx (38) 

where p is the mass density of a frame member. The vibration 
frequency w is given by the Rayleigh quotient 

£ (EIK]+N0w{x)dx 
i J o 

^ pAw\dx 
i Jo 

(39) 

We consider a parameter p that affects the cross-sectional 
areas and moments of inertia of the members. The adjoint 
problem, equation (24) becomes 

ex2 - ux2,x 

N2=EAex2 

,', 

«2 = - W 2 , « 

Af, = EIK-, (40) 

/ J \ (M25/c-r-N25eA.+N0M'2;(5vvH,)dA: = 0 
,. Jo ' 

where 

42 = e*2+-^-<x- (41) 

Thus, the only adjoint load is the initial strain - 1 / 2 w2
Ux. 

Equation (31), for the frequency derivative, can now be writ
ten as 

(<o2)p 

f'i 

E )o [EIPK\ + 2 ( £ V I o -EAe'xp)ex2 - u2
PApw\}dx 

Iwjdx 

Journal of Applied Mechanics 

(42) 

Note that the first term in the numerator of equation (42) ac
counts for the change in bending stiffness, the second term ac
counts for change in axial forces, and the third term accounts 
for the change in inertia properties. 

Consider, for example, a simply-supported beam shown in 
Fig. 1. The beam is heated to a temperature T above its stress-
free state, resulting in an axial member force and mechanical 
strain 

N0 = -EAaT, er
M=N0/EA =-aT (43) 

where a is -the coefficient of thermal expansion. The 
temperature T is selected to produce a member force equal to 
half of the buckling load 

(44) T= 
lAul1 

(45) 

The vibration mode for the beam is in the form 

w , = j B s m — 

where B is an arbitrary constant. The vibration frequency, 
equation (39) is given by 

"= M ? • (46) 

The adjoint initial strain - 1 / 2 w]tX is equivalent to 
nonuniform cooling of the beam. It results in a tensile member 
force N2 producing a constant strain er

Xl=_N2/AE which 
counteracts the required shortening due to the initial strain 

& - i : (—)wlxdx=ir2B2/4l. (47) 

Equation (42) can now be evaluated with the aid of equations 
(43), (44), (46), and (47) as 

("V 
•KAE 

Apl4 (v 1A 1A r)- (48) 

The reason that the two identical terms in equation (48) are 
written separately is to preserve the correspondence with equa
tion (42). It is seen that the second term associated with the 
change in axial load due to change in area is of equal 
magnitude with the third term, which accounts for the change 
in inertia. Equation (48) can be easily verified directly by dif
ferentiating equations (43) and (46) with respect to p. 

Plate Example 

The first example that demonstrates the use of the adjoint 
approach for derivatives of buckling loads is the square plate 
under uniaxial edge compression shown in Fig. 2. The plate is 
divided into two regions, and the effects of increasing the 
thickness or the temperature in the central region are in
vestigated. The calculations are performed using the EAL 
finite element program (Whetstone, 1983) which supports a 
programming language (Engineering Analysis Language). A 
procedure written in that language for applying initial strain 
loading was used, but it was limited to uniform strains in an 
element. 

To produce the initial strain for the adjoint structure, 
-£-2(«i) (cf-, equation (24)) was calculated at the four nodes of 
each element and the average value used. The first term in the 
numerator of equation (32) was calculated using the 
equivalent UTKp U where U is the buckling mode and K the 
global stiffness matrix. The derivative Kp was calculated by 
forward difference with a step size of one percent of the 
thickness. The second term was calculated at the element level 
because it cannot be expressed in terms of global matrices. The 

MARCH 1990, Vol. 57/21 

Downloaded 03 May 2010 to 171.66.16.244. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



denominator of equation (32), not including live loads, is nor
malized to unity in EAL. 

The plate was modeled using square grids with 4 to 16 EAL 
elements, type E43, per side. These elements model both the 
in-plane prebuckling deformations as well as the out-of-plane 
displacements associated with buckling. The results for the 
buckling load and its derivative with respect to temperature 
change in region 1 are given in Table 1. The analytical 
derivatives are compared to finite difference derivatives. It is 
seen that the convergence of the semianalytical derivatives 
with mesh refinement is slower than that of the finite dif
ference derivatives. This is due to the constant-strain modeling 
in the EAL procedure. The agreement, however, is quite good 
except for the crudest mesh. 

Similar results are given in Table 2 for derivatives of the 
buckling load with respect to change in thickness in region 2. 
It is seen that the term accounting for the change in prebuck
ling stresses is responsible for about ten percent of the 
derivative. 

Composite Cylindrical Panel 

The second example is an infinitely long 2-layer composite 
cylindrical panel under edge shear loading. This is shown in 
Fig. 3, which also gives geometric data, lamina moduli, and 
boundary conditions. 

The panel wall is a regular antisymmetric angle-ply 
laminate. The sensitivity parameter is the outer layer fiber 
angle, a, measured from the longitudinal direction, with 
positive a corresponding to rotation of the layer towards the 
direction of maximum tension under the pure shear load (see 
Fig. 3.). As the outer layer rotates, it is assumed that the inner 
layer rotates by the same angle, a, but in the opposite direc
tion. Thus, in general, the stacking sequence is [90 deg-a, a]. 

The calculations were performed using FASOR, a shell-of-
revolution program (Cohen, 1981). The FASOR model for an 
infinitely long, cylindrical panel is a large radius toroidal shell 
of revolution with a circular arc meridian, as depicted in Fig. 
3. Note that the circumferential direction of the toroidal 
model corresponds to the longitudinal direction of the panel. 
For large values of the ratio of circumferential radius r of the 
toroid to panel-width B, the toroid behaves like a long, cylin
drical panel. 

Studies of panels based on the approximate Karman-
Donnell shell theory have shown that their geometry is 

Table 1 Buckling loads and their derivatives with respect to 
temperature change in region 1 of plate of Fig. 2 

Mesh 
4 x 4 
8 x 8 

12x12 
16x16 

Buckling 
load3 (lb) 

412.40 
411.31 
411.25 
411.24 

Adjoint method 
derivative 

(lb/°F) 
-37.61 
-32.16 
-31.30 
-31.01 

Finite difference 
derivativeb 

(lb/°F) 
-29.11 
-30.23 
-30.46 
-30.54 

aExact value = 4ir2D/a = 411.234 lb 

bCentral differences with 1°F increment 

specified by the curvature parameter 6 = B/(Rh)U2 (e.g., Hui 
and Du, 1987). Thus, for a given value of 6, the response 
should be relatively insensitive to R/h. Indeed, a spot check 
for a = 0 deg on the effect of changing R/h from 100 to 1000 
showed a change of 0.5 percent in critical stress and 2.6 per
cent in its sensitivity derivative. 

It should be noted that the cross-ply laminate (a = 0 deg) is 
orthotropic in panel coordinates; hence, no shear-extension 
coupling exists. Since an antisymmetric cross-ply laminate also 
has no shear-twist coupling (Jones, 1975), its prebuckling state 
is a membrane state of pure shear. On the other hand, for 
a ;*0 deg the laminate is anisotropic with coupling between 
shear and extension/flexure. Therefore, in this case the possi
ble effect of prebuckling rotation and nonlinearity on buck
ling must be considered. 

The effect of a on the buckling of the panel is shown in Fig. 
4 in terms of the dimensionless buckling load r* =N*yR/E2h

2 

and the second post-buckling coefficient b1 (Cohen and 
Haftka, 1989). From the results in Fig. 4 it is seen that, initial
ly, rotation of the fibers towards the direction of maximum 
tension (and, hence, away from the direction of maximum 
compression) increases panel stability. As a increases from 

ft-values are based on a buckling mode normalized such that its maximum 
normal deflection equals the panel thickness. 

^ T N x y 

Boundary conditions at y = 0 and y = B: 
out-of-surface, clamp (w = v/R - w y = 0) 
in-surface, free (Nxy = const.. Ny = 0) 

Lamina elastic moduli: 
. B E-,/E2 = 10, G12/E2 =

 1/3 
v12 (major Poisson's ratio) = 0.22 

Geometry: 1 

6= B/(Rh)/5= 8, R/h = 100 

Fig. 3 Two-Ply composite (90 deg-a, a] long cylindrical panel 

T 0.7 

10 20 

a,degrees 

Fig. 4 Critical shear stress T* and postbuckling coefficient b as a func
tion of ply angle a for panel of Fig. 3 

Table 2 Derivatives of buckling loads with respect to thickness change in 
region 2 of plate of Fig. 2 

Analytical Derivative (lb/in) 

Mesh 
4 x 4 
8 x 8 

12x12 
16x16 

due to change 
in prebuckling 

stress 
-852 
-799 
-775 
-766 

due to change 
in stiffness 

8586 
8622 
8622 
8623 

Total 
7734 
7823 
7847 
7857 

Finite difference 
derivative3 

(lb/in) 
7708 
7886 
7916 
7927 

aForward difference with 1 percent increment 
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Table 3 Dimensionless buckling load (T* = N*yR/Eiri
2) and its derivative 

with respect to ply-angle a of panel of Fig. 3 

a(deg) 
0 
10 
20 

T* 

0.5734 
0.8652 
0.7863 

L/2B* 
0.600 
1.672 
1.754 

rfT'/oMdeg-1) 
Adjoint methodb Finite difference method 

0.0459 0.0462 
0.0018 0.0002 

-0.0114 -0.0120 

aL = longitudinal buckle wave length 
bEquation (/18) using AD/Act (Aa = 1 deg) for D„ 
cAT*/Aa(Aa=l deg) 

Table 4 
Fig. 3 

Act (deg) 
1.0 
0.1 
0.05 
0.025 

Effect of Aa oh di*/da for a = 10 deg for panel of 

dr*/da (deg-1) 
Adjoint method Finite difference method 

0.00185 0.00025 
0.00256 0.00187 
0.00260 0.00208 
0.00262 0.00226 

L = longitudinal buckle wave length 
x0 = longitudinal station at which 

profile is antisymmetric 

zero to ten degrees, the panel is stabilized by the appearance of 
longitudinal tension arising from the shear-extension cou
pling. However, as also shown in Fig. 4, this increase in 
critical shear stress is accompanied by a transition from insen-
sitivity to geometric imperfections (b>0) to imperfection-
sensitivity (6<0) at « i 4 deg. Beyond ten degrees the 
longitudinal tension peaks and the effect of rotating the fibers 
away from the direction of maximum compression asserts 
itself so that the buckling load decreases. 

Results for the critical shear load and its derivative, with 
respect to a, are given for a = 0, 10 deg, 10 deg and 20 deg in 
Table 3. Buckling deflection profiles at two longitudinal sta
tions spaced one-quarter wavelength apart are shown for a = 0 
deg in Fig. 5. 

For a= 10 deg, near the maximum of r* there is a large 
discrepancy between the adjoint and finite difference results. 
This is due to Aa of one deg being inappropriately large near a 
stationary point. Table 4 shows that the two values converge 
as Aa is decreased. However, the exact value of the derivative 
at a = 10 deg is of little value because it is practically zero. 

Concluding Remarks 

A uniform variational approach to sensitivity analysis of 
vibration frequencies and bifurcation loads in nonlinear struc
tures has been developed. Two methods of calculating sen
sitivities of vibration frequencies of loaded structures and 
bifurcation buckling loads with respect to stiffness and initial 
strain parameters have been presented. A direct method re
quires calculation of the sensitivity of the prebuckling state 
with respect to the parameters. An adjoint method bypasses 
the need for these derivatives by using instead an adjoint field. 
The adjoint field is the same as the second-order post-buckling 
field for symmetric bifurcation. This fact provides a link bet
ween post-buckling and sensitivity analysis. In particular, im
perfection sensitivity can be incorporated into the general 
framework of sensitivity analysis, with respect to stiffness and 
shape parameters. 

The derivation, based on the principle of virtual work, is 
easily implemented in structural analysis programs. This has , 
been demonstrated by two examples. The EAL general finite 
element program is used to obtain derivatives of buckling 
loads of a square plate with respect to initial strain and 
thickness changes. The FASOR shell-of-revolution program is 
used to obtain derivatives of buckling loads of an angle-ply 
cylindrical panel with respect to ply angles. In both cases good 
agreement of analytical and finite difference derivatives is 
obtained. 

(a) x = x0 

CHORDAL DISTANCE/(Rh) 

(b) X = X0 + U4 

7.00 8.00 

CHORDAL DISTANCE/(Rh) 

Fig. 5 Undeformed profiles (dashed lines) and buckled profiles (solid 
lines) of cylindrical panel of Fig. 3, a = 0 
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A P P E N D I X 

Error in Bifurcation Buckling Load Derivative due to 
Linearized Buckling Solution 

Typically, equations (9) are solved for the buckling load Xc 

by setting co = 0 and using a linear approximation for the 
critical prebuckling state based on the response at a lower level 
X0, viz. 

"o = «o = "o(>V>) + M"o(Xo) 

e5±e0 = e0(Xo) + M«o(\>) t 4 1 ) 

<j$± CT„ = <7o(\)) + /*ffo(\>) 
where /x = Xc - X0. Equations (9) are then approximated by 

e i=£i (« i ) + £n(«o,« i ) 
al=Dei (A2) 

ai'[Li(bu) + Ln(u0,8u)} + o0*Lu(ul,bu)-\cql(ui)'8u = 0. 

Differentiating equations 042) with respect to p, and then set
ting 8u = uu we get 

iiP=Ll(uip)+Ln(u0p + lipui,u1) + Ln(u0,ulp) 

alp=Dpei+Delp (A3) 

"ip*ei+tfi ,£ii(Wop + / ^ " o i " i ) 

+ (°op + Hp°o)'L2(Ui) + Oo'Ln(.Ui>Uip) 

-Kdi(.U\p)'Ui - ^<7 i ( " i ) ' " i =0 
where u0p = u0p + IIUQP and aQp = a0p + noop are the derivatives 
with respect to p of the linear approximation state. We first 
eliminate the derivaties of the buckling field with respect to p 

by setting 8u = ulp in equation 042c) and using equations 
043a, b) and (A2b) to get 

Dptx'ex +2al-Lu(u0p, uy) + a0p-L2(Ui) 
(A4) 

**" 2ff,«Ln(ui, u^) + a^L2(ux)- q%(ux)-u^ 

Equation 044) is identical in form to equation (22), with star
red quantities in equation (22) replaced by linear approxima
tions. To calculate «0p and a0p we differentiate equations (16) 
with respect to X to get 

«0 /l=^l(«0p) + i l l("Q.«0/>) + ^ l l («0 .«0p) 

olp=Iklp+Dpel {AS) 

oip'5e0 + oi'Ln{u0p,8u) + o0p'Ln(ui,8u) 

+ o-Q'Ln(uip,8u)- [X091(«op) + «ri(«Qp)],5« = 0. 
Multiplying equations (.45) by ft and adding to equations (16) 
we have 

«oP = Lx{u0p) + Ln(uQ, u0p) - (x2Z-u(«o> «Qp) 

o0p=D(e0p-tp) + Dp?a (A6) 

a0p8e0 + a0'Lu(ii0p,8u)-\cgi(u0p)'8u 

-H2[aip'Lu(ui,8u) + ao-Lu(uip,8u) + (}i(uip)-8u] = 0. 

Except for the terms in fi1, equations (A6) are of the form of 
equations (16). 

The adjoint equations (24) are approximated by 

e2=Ll(u2) + Lu(u0,u2) 

a2=D(e2+~L2(ul)) = De2 (Al) 

a2'8i0 + a0'Ln(u2, 8u)-\cql(u2)-8u + <jl'Ln(ul,bu) = 0. 
Equations 046) and (Al) can be used to eliminate u0p and a0p 

in equations 044), in the same manner that equations (16) and 
(24) were used to elminate u^p and OQP in equation (22), to yield 
the result 

H Dp£i-^+2(Dpeor-Dei
p)-e2-+0(fi

2) 
P ^\,LU(UQ, ul) + (ii-L2(ul)-ql(u1)'Ul ' 

Except for terms of order n2, equation (.48) has the same form 
as equation (32). In practice, equation (.48) with 0(^2) 
neglected is used to calculate (\c)p = np. 

048) 
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A Crysfallographic Model for the 
Tensile and Fatigue Response for 
Rene N4 at 982°C1 

/4n anisotropic constitutive model based on crystallographic slip theory was for
mulated for nickel-base single crystal superalloys. The current equations include 
both drag stress and back stress state variables to model the local inelastic flow. 
Specially designed experiments have been conducted to evaluate the existence of 
back stress in single crystals. The results showed that the back stress effect of reverse 
inelastic flow on the unloading stress is orientation dependent, and a back stress 
state variable in the inelastic flow equation is necessary for predicting anelastic 
behavior. Model correlations and predictions of experimental data are presented for 
the single crystal supperalloy Rene N4 at 982°C. 

I Introduction 
Nickel-base single crystal superalloys attract considerable 

interest for use in rocket and gas turbine engines because their 
high temperature properties are superior to those of 
polycrystalline nickel-base superalloys. In high temperature 
applications, grain boundaries in polycrystalline alloys pro
vide passages for fast diffusion and oxidation. Thus, inter-
crystalline cracks frequently occur at the grain boundaries and 
cause rupture failure. The development of superalloy single 
crystals has led to far superior thermal, fatigue, and creep pro
perties than conventional superalloys. However, the absence 
of grains in single crystal alloys leads to material anisotropy 
which produces orientation-dependent material response in 
addition to other time-dependent inelastic properties found in 
polycrystalline materials. Hence, constitutive modeling of the 
single crystal alloys is more difficult and requires a more com
prehensive understanding of the structural and mechanical 
properties and the associated deformation mechanisms. 

Single crystal alloys exhibit cubic symmetry and the 
response is quite different from polycrystalline materials. The 
elastic stress-strain relationship is orientation dependent. 
Three material elastic constants, i.e., elastic modulus, shear 
modulus, and Poisson's ratio, are required to describe the 
single crystal elastic behavior (Yang, 1984). 

The yield strength of single crystal alloys is a function of the 
material orientation relative to the direction of the applied 
stress (Shah and Duhl, 1984). Single crystal superalloys also 
exhibit significant tension/compression asymmetry in yield 
strength (Lall et al., 1979; Ezz et al., 1982; Umakoshi et al., 
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MECHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Prof. 
Leon M. Keer, The Technological Institute, Northwestern University, 
Evanston, IL 60208, and will be accepted until two months after final publica
tion of the paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript 
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sion, April 24, 1989. 

1984; Heredia and Pope 1986; Miner et al., 1986a). This 
behavior is primarily due to slip on the octahedral slip system. 
The tension/compression asymmetry is negligible near the 
[111] orientation where cube slip was found to be the primary 
slip system. Above a critical temperature, approximately 
700-760°C, there is a sharp drop in the yield strength, cube 
slip becomes more predominant, and the tension/compression 
asymmetry is less significant (Shah and Duhl, 1984; Heredia 
and Pope, 1986; Gabb et al., 1986). Single crystal superalloys 
also exhibit strain rate sensitivity and cyclic hardening (Swan-
son et al., 1984). 

The active slip systems in single crystal superalloys depend 
upon crystal orientation with respect to the applied loads, 
temperature, and strain rate, and could involve one or more 
types of slip. Three primary slip systems include: 

• slip on the four [111) octahedral planes in the three 
directions similar to the <110> direction. 

• slip on the four [111) octahedral planes in the three 
directions similar to the < 112> direction. 

• slip on the three < 100> cube planes in the two directions 
similar to the <110> direction. 

There are 30 possible slip components in total as shown in 
Table 1. Generally, these slip components are not all operative 
simultaneously. For high strain-rate loading, both octahedral 
and cube slip in the <110> directions were found for many 
nickel-base single crystal alloys (Miner et al., 1986a; Milligan 
and Antolovich, 1987), whereas for low strain-rate loading 
such as creep, the active slip systems and associated crystal lat
tice rotation are different from one alloy to another (Leverant 
and Kear, 1970; MacKay and Maier, 1982; Hopgood and Mar
tin, 1986). The modeling for low strain is discussed elsewhere 
(Sheh, 1988). 

The model proposed in this study is based on a previous 
work by Dame and Stouffer (1986), where the Bodner-Partom 
(1975) equation, with only the drag stress, was used to model 
the local inelastic response in each slip system. The Dame and 
Stouffer model was based on a unified strain theory. The 
elastic strains were calculated by using cubic symmetry. The 
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Table 1 Designated slip number, slip plane normal, and slip direction for each slip system 

Slip No. | Slip No. 

1 
2 
3 
4 
5 
6 

[ 1 
[ 1 
[ 1 
[ - 1 
[ -1 
1-1 

1 
1 
1 
1 
1 
1 

1] 
1] 
1] 

-•1] 
- 1 ] 

1] 

Octahedral Slip a 

1 0 - 1 ] 
' 0 - 1 1] 

1 - 1 0] 
• 1 0 - 1 ] 

1 1 0] 
0 1 1] 

/2<110>(111) 

7 
8 
9 

10 
11 
12 

[ 1 - 1 
[ 1 - 1 
[ 1 - 1 
[ -1 - 1 
[ -1 - 1 
[ - 1 - 1 

- 1 ] 
-11 
-1J 

U 
11 
M 

[ 1 
1 o 
I 1 
I o 
I 1 
I 1 

1 
- 1 

0 
1 
0 

- 1 

0] 
11 
u 1] 
1] 
01 

Octahedral Slip a/2( 112> [ 111 ] 
13 
14 
15 
16 
17 
18 

[ 1 
[ 1 
[ 1 
[ - 1 
[ -1 
[ -1 

1 
1 
1 
1 
1 
1 

1] 
1] 
1] 

- 1 1 
1] 

- 1 ] 

- 1 
2 

- 1 
1 
1 

- 2 

2 
1 
1 
2 

- 1 
- 1 

- 1 ] 
- 1 ] 

2] 
1] 

- 2 ] 
1] 

19 
20 
21 
22 
23 
24 

[ 1 
[ 1 
[ 1 
[ 1 
[ -1 
[ -1 

- 1 
- 1 
- 1 
- 1 
- 1 
- 1 

- H 
-11 
-11 

11 
11 
1] 

[ -1 
1 2 
1-1 
1-2 
1 1 
I 1 

1 
1 

- 2 
1 

- 2 
1 

-21 
11 
11 

-M 
-11 

2] 

Cube Slip a/2< 110X100) 

25 
26 
27 

[ 1 
[ 1 
[ 0 

0 
0 
1 

01 
01 
0) 

[ o 
f o 
[ 1 

1 
1 
0 

1] 
- 1 ] 

1] 

28 
29 
30 

[ o 
[ o 
[ o 

1 
0 
0 

01 
1) 
1) 

[ 1 
1 1 
l - l 

0 
1 
1 

-11 
01 
0) 

"The direction expressed by the Miller indices does not represent the unit vector in the direction. 
a: slip plane normal; 1: slip direction 

inelastic strain rate was calculated by summing the contribu
tions of slip in each slip system. The inelastic slip rate on each 
slip system was computed from a local inelastic constitutive 
equation that depended on the resolved shear stress compo
nent in each slip direction and a local state variable. A non-
Schmid's law was used for slip on the first octahedral system, 
«/2( 111 )<110>, to model the tension/compression asym
metry and orientation dependence. This was achieved by in
corporating the "core width" effect proposed by Lall, Chin, 
and Pope (1979). A Schmid's law component in the flow equa
tion was used to model the inelastic flow in the cube slip 
system because tension/compression asymmetry was 
insignificant. 

The objective of the present paper is to present an 
anisotropic consitituve model for nickel-base single crystal 
superalloys under isothermal loading conditions. In the pro
posed model, a back-stress state variable has been incor
porated into the local slip equation based on the observed ex
perimental evidence. As a result of this modification, fatigue 
loop prediction is significantly improved and material 
behavior such as anelasticity can be modeled. Comparisons of 
the model predictions and experimental data for single crystal 
superalloy Rene N4 at 982°C are presented. 

II The Presence of Back Stress 

Dame and Stouffer (1986) assumed that back stress should 
not be present or, if present, it should be negligible in single 
crystal alloys because of the lack of grain boundaries (the 
primary source of back stress build-up). Thus, only the drag 
stress was included in their model. At about the same time, 
Walker and Jordan (1985) proposed a model with back stress 
for single crystal superalloys similar to earlier work by Walker 
(1981). Thus, the presence of back stress is an issue that needs 
clarification. Recent experimental observation supports the 
existence of the back stress in single crystals. Milligan and 
Antolovich (1987) showed for PWA1480, that when disloca
tions emerge from precipitates, constrictions of the disloca
tions occur because of high antiphase boundary energy 
(APBE); thus portions of the dislocations are split because of 
elastic repulsion. This suggests that back stress should be a 
component in the local force equilibrium equation. Other 

mechanisms have also been suggested for establishing back 
stress in single crystals (Jackson, 1986). These include cross-
slip, which establishes a framework of dislocation cells; secon
dary slip, which completes the formation of relatively stress-
free dislocation cells; and local slip within dislocation-rich 
load-bearing cell walls. 

An early goal in this research was to confirm the need for a 
back stress state variable in the current model. To achieve this 
goal, an experiment was designed based on the structure of the 
inelastic flow equation with back stress 0,-,-: 

e'u = \(afl-Qu), (1) 

where X is a scalar function of macroscopic and state variables 
that maps the overstress, a,-,- — 0,-,-, onto the inelastic strain rate, 
e'j. Equation (1) reveals that inelastic flow can be present even 
when the applied stress, aijt is zero, as long as the back stress is 
large enough to produce meaningful strain rates. Using this 
hypothesis, two experiments at 982°C were conducted on 
Rene N4 samples. Figure 1 shows the results of a double ten
sile test in the [100] and [111] orientations. In both tests, the 
sample was loaded to 1.5 percent strain at a strain rate of 
lxl0_ 4 /sec, unloaded to zero stress within 10 seconds, 
followed by the 120-second zero-stress hold period, and then 
reloaded at a higher strain rate of 6 X 10"4/sec. The reverse in
elastic strain histories during the hold period are shown for 
both samples in Fig. 2. (The model predictions expressed in 
solid lines in these figures will be discussed later). Significant 
anelastic recovery was observed during the zero stress hold 
period for the [100] sample whereas the recovery was minimal 
for the sample in the [111] orientation. 

These results clearly demonstrate the existence of back 
stress and the orientation dependency of the recovery 
mechanism. They also suggest that without the back-stress 
term in the flow equation similar to equation (1), anelastic 
recovery cannot be predicted. These experiments motivated 
the development of a new model using back stress and drag 
stress for single crystal superalloys at elevated temperatures as 
will be discussed. 

Ill Constitutive Equations 

The constitutive model is based on a unified theory that 
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separates the total strain in the principal axes of the material 
into elastic and inelastic components; that is: 

^=€0 + €j, (2) 
where efj is the total strain, ef is the elastic strain component, 
and ejj is the inelastic strain components in the principal 
material system. The thermal strain is not included in equation 
(2) because the proposed model-is developed for isothermal 
conditions. The elastic constitutive equation for cubic sym
metry in the material principal axes can be written as 

*</' ~ (^y)oCT + (^y)cUBE> (4) 

where (eJ)0cT a nd (^')CUBE represent the inelastic strain rates 
resulting from octahedral and cube slip in the <110> direc
tions, respectively. It has been shown (Leverant and Kear, 
1970; MacKay and Maier, 1982) that slip in the second oc
tahedral system, a/2<112> (111), occurs only during low 
strain-rate loading and is not included in the formulation for 

en 

622 

^33 

^23 

«31 

«12 

J 

E 1 

~E 

V 

~E 

V 

~~E 

0 

0 

0 

V 

~~E 

1 

~E 

V 

~~E 

0 

0 

0 

V 

~E 

V 

~E 

1 

~E 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

1G 
0 

0 

0 

0 

0 

0 
1 

~2G 

°22 

°23 

<?31 

(3) 

where the stress is denoted by ay. The compliance matrix in 
equation (3) contains three independent material con
stants: Young's modulus E, Poisson's ratio v, and the shear 
modulus G. Using this elastic stress-strain relationship, the 
orientation dependence in the elastic range can be modeled by 
transforming equation (3) into any other orientation. 

Since the inelastic constitutive equations are applied at the 
crystallographic level, a kinematic relationship is required to 
relate the stress tensor in the material principal axes to the 
resolved shear stresses on each slip system. In addition, the in
elastic strain rate in the material principal axes must be deter
mined from the components of slip in each slip system. The re
quired stress and infinitesimal strain relations were developed 
by Bishop (1952) and Paslay et al. (1970) and are used in this 
study. 

The orientation dependence of the hardening characteristics 
in the inelastic region is modeled by using the inelastic flow 
equation. The inelastic flow is calculated by summing the con
tributions of the first octahedral and cube slip systems, that is: 

the tensile and fatigue response at this time. The inelastic 
strain rate in the principal material direction is calculated by 
summing the contributions from each of the crystallographic 
slip systems using results in Bishop (1952) or Pasley et al. 
(1970). The total inelastic strains are then obtained by in
tegrating the inelastic strain rate with time. Formulation of the 
local inelastic flow equation for each of the two slip systems is 
introduced next. 

Octahedral Slip of a/2<100> (111) Type. Based on the 
work of Ramaswamy on Rene 80 (1986), a polycrystalline 
nickel-base superalloy with similar chemical composition as 
Rene N4, the octahedral flow equation for the inelastic shear 
strain rate, YS'CT'

 m the /3 direction on the a slip plane is 
assumed to have similar exponential form with both drag and 
back stress; that is: 

r / zf \ "n 
^ = A « P [ - M I T * - I H « I ) (5) 

600 
RENE N4 AT 982C 

(2) 
(100) 

(111) 

TEST RATE: 

LOOP (1) - 1.0E-4/SEC 
LOOP (2) - 6.0E-4/SEC 

i — i — T — i — i — i — i — i — 

0.01 0.02 0.03 

AXIAL STRAIN, m m / m m 
0.04 

Fig. 1 Double tensile test with 120-second zero-stressd hold in the 
[100] and [111] orientations for Rene N4 at 982°C 

6.0E-004 

£ 5.0E-004 

O 
O 

OL 3.0E-004 

2.0E-004 

O 
I -

3 

150.0 

TIME, sec 
Fig. 2 Anelastic strain recovery during the 120-second zero-stress hold 
for the double tensile tests in the [100] and [111] orientations 
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where Zf is the drag stress state variable to characterize the 
mobile dislocation resistance to motion due to precipitates, 
and Of3 is the back stress state variable used to describe 
dislocation interaction and/or rearrangements. The difference 
between the resolved shear stress, ra®, and the back stress, 
ttf, serves as the driving force for the inelastic flow. The 
direction of the local slip rate, YO'CT. is then dependent on the 
sign of the overstress T"" - Qf. Constants £>, and A, are scale 
factors and nn is the strain-rate sensitivity exponent. 

Formulation of the back stress component varies among 
different investigators. Ramaswamy (1986) suggested that the 
back stress can be written in elastic and inelastic components; 
that is: 

where elastic back stress rate is assumed to be linearly propor
tional to the resolved shear stress rate, and is motivated by the 
release of dislocation pile-ups when the stress is removed. The 
inelastic component, similar to Walker's (1981) and 
Ramaswamy's (1986) models, is given by: 

(fifY=F11 y&T I "<2 fsign(7&r) — ^ r ] > <7) 
L " S A T J 

except for an exponent nn which is added for more generality. 
Combining equations (6) and (7) gives the initial formulation 
for the back-stress evolution equation used in this study: 

(it?) = F{ I Y & T I "»2 ("sign (YO^CT) - " f , 1 + G, f<*, (8) 
L " S A T J 

where nn, F\, G,, and QSATI are material constants. The 
saturated back stress at high strain-rate loading conditions is 
denoted as 0SATI; a n d , at strain rates in the creep range the 
saturated back stress is not constant (Ramaswamy (1986)). As 
shown in equation (8), the current formulation uses I -yĝ T I 
and Y0^ as measures of back stress growth to control the 
strain-hardening behavior during high strain-rate loading. 

According to the structure of the back stress evolution equa
tion, the anelastic recovery effect is primarily controlled by the 
G{y

aB term. If the elastic coefficient G{ has a large value, the 
changes in back stress during elastic loading and unloading 
will be significant. Thus, for the double tensile test described 
earlier, the back stress may decrease significantly during 
unloading and result in a near zero back stress at the beginning 
of the 120-sec hold period. This small back stress might not be 
large enough to produce meaningful anelastic recovery during 
the hold period. However, if the material is less sensitive to the 
elastic component (e.g., smaller G,), the anelastic recovery 
may be significant during the hold period because of the larger 
remaining back stress in the beginning of the hold period. This 
was found to be true for Rene N4 at 982°C and G, was taken 
as zero. 

Dynamic thermal recovery is included through the 
-fii"^/QSAT1 term. Static thermal recovery was not evaluated 
in the current study. It should be noted that the back stress in 
the current model has a scalar form rather than the tensorial 
back stress in other models because local slip is unidirectional. 

The variable Zf in equation (5) includes work or strain 
hardening which arises from the development of a dislocation 
substructure and includes a measure of tension/compression 
asymmetry. The drag stress, Zf, used in this study is given by: 

Zf =Hf + K, rf +V2\Tf\ + ViTf, (9) 

where the parameter Hf is a measure of work hardening, and 
rf and rf are the shear stress components associated with the 
"core width" effect and the cross-slip mechanism suggested 
by Lall et al. (1978). This mechanism was used to explain the 
tension/compression asymmetry in many Ll 2 single crystal 
alloys (Ezz et al., 1982; Umakoshi et al., 1984; Heredia and 
Pope, 1986; Miner et al., 1986a). The shear stress rf is on the 
same octahedral plane and is perpendicular to T"*3. The direc-

Table 2 Slip system numbers for resolved shear stresses, T1 , 
T2, and T3 in equation (9) 

r 

1* 
2 
3 
4 
5 
6 

T, 

13 
14 
15 
16 
17 
18 

T2 

28 
26 
30 
28 
29 
25 

r3 M r 
16 
20 
24 
13 
19 
22 

7 
8 
9 

10 
11 
12 

Tl 

19 
20 
21 
22 
23 
24 

T2 

' 29 
26 
27 
25 
27 
30 

T3 

17 
14 
23 
18 
21 
15 

'slip system number • 

tion of rf controls the constriction or separation of the two 
Shockley partial dislocations in the y' precipitates and, 
therefore, affects the ability of the dislocation to cross-slip 
from the octahedral plane to the cube plane. Thus, the ten
sion/compression asymmetry is caused by the magnitude and 
sign of rf. The shear stress rf is the resolved shear stress on 
the cube plane in the same direction as 7a(3. The magnitude of 
rf controls the potential of cross-slip in either direction on 
the cube plane, and therefore the absolute value of rf is used 
in equation (9). 

Lall, Chin, and Pope's model was later modified by Paidar, 
Pope, and Vitek (1984) to include the resolved shear stress, 
rf3, in the < 121 > direction on the secondary octahedral slip 
plane. Paidar et al. (1984) found that rf has a similar effect to 
rf, which also affects the anomalous yield behavior in Ll2 

alloys. Thus, rf, is included in the proposed equation. The 
constant parameters Vx, V2, and V3 are then used to establish 
the tension/compression asymmetry. A listing of the cor
responding slip system number for TU T2, and T3 is given in 
Table 2. 

The increase in flow resistance caused by cyclic hardening, 
Hf, is governed by the evolution equation: 

Hf = ml(Hn-Hf)ral3y0:'j. (10) 

Replacing the inelastic work rate, ral3yal3, with the symbol 
(W'y®, rearranging, and integrating with respect to time gives 

/ff*=tfi2 + ( # i i - # i 2 ) exp( -« , (»*)<*) . (11) 

The quantities Hn and Hn are the initial and saturated values 
of Hf, respectively. The cylic hardening or softening is 
modeling by the increase or decrease of Hf depending upon 
the values of Hn and Hl2. The accumulated inelastic work is 
used as the measure of cyclic hardening. The parameter ml is 
the exponent associated with (W')a® to model the rate of cyclic 
hardening or softening. 

Cube Slip of a/2< 100) {100) Type. Cube slip components 
are active for loading near the [111] orientation. Mixed cube 
slip and octahedral slip components were operative during ten
sile tests in the orientations away from the [111]. Similar to 
equation (5), the flow equation for the inelastic shear strain-
rate on the a-cube plane in the /3-direction is given by 

« „ r / zf \ "21 ] T"13 - Qf 

^=DM-AAT^W\) I i^-af i ' (12) 

where Zf and Uf are the drag stress and back stress state 
variables for the cube slip, respectively. Constants D2 and A2 

are scaling factors and n2i i
s t n e strain-rate sensitivity expo

nent for cube slip. 
The back-stress evolution equation for cube slip is also 

similar to the octahedral slip and has the form: 

(Qf)=F2\r*\"x f s i g n ( 7 " * ) — - ^ - 1 +G2f^, (13) 
L " S A T J 

where n22, F2, and G2 are material constants. The saturated 
back stress for the cube slip is denoted as QSAT2 • Parameter G2 

was also found to be near zero. 
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DATA BASE : 
Time, Stress and Inelastic Strain Rate 

STEP 1: FLOW EQUATION CONSTANTS 

"ll. V,, V2, V3, (2gAT and H,, 

Using Saturated Tensile Data 

: 
Check Ultimate Tensile Values 

STEP 2: BACK STRESS CONSTANTS 

Determine G1, n 1 2 and Fx 

Using Relaxation and Tensile Test Data 

Check Tensile Response Calculation 

STEP 3: DRAG STRESS CONSTANTS 

Evaluate Drag Stress and Inelastic Work 
Determine Drag Stress Constants H 1 2 and mx 

Check Cyclic Response Calculation 

Update Hi,? 

( STOP 

Fig. 3 Flow chart for inelastic material constant evaluation 

The drag-stress evolution equation for cube slip is similar to 
equation (9) but it does not contain the tension/compression 
dependence terms (i.e., T,, T2, and T3 terms) because ten
sion/compression asymmetry is insignificant for samples 
deformed primarily by cube slip; therefore, the formulation is 
similar to Schmid's law. The drag-stress evolution equation 
for the cube slip system in integrated form is given by: 

Zf =Ha + (//21 -H22) exp(-m2{W')^), (14) 
where H2{, H22, and m2 are determined from the fatigue 
response of the cube slip system. The static thermal recovery 
term is not included. 

In summarizing, the current model uses a similar form of 
equations for both the octahedral and cube slip systems. The 
drag stress is used to capture the long-term cyclic hardening 
whereas the back stress is used for the short-time strain 
hardening and recovery in the monotonic tensile tests. This is 
distinctly different from the model proposed by Dame and 
Stouffer (1986) where a single drag stress was used to account 
for both the strain and cyclic hardening mechanisms. 

IV Experimental Program and Material Constants 

All the mechanical tests were performed at 982 °C on a MTS . 
closed-loop mechanical test system with a 20,000 kip load 
frame. These were axial-strain controlled tests in which load 
and axial strain were monitored using a microcomputer. The 
test specimens were 14.0 cm long with 3.0 cm long Rene N4 
bars in the gage section. All samples were electron-polished 
and Laue X-ray photography was taken to determine the ac
tual specimen orientation prior to each mechanical test. 

Ten experiments have been performed in five nominal 

Table 3 Material constants for Rene N4 at 982 ° C 

A 
A, 
ni\ 
Hi\ 
Hp 
m: 
V\ 
V-, 
V, 
F, 
na 

Material 
Parameter 

1/sec 
— 
-

MPa 
MPa 

1/MPa 
-
- . 
-

MPa/sec 
-

°SAT; MPa 

OCT 
(»"=!) 

O.IOOOOE + Ol' 
0.50000E + 00 
0.53000E + 00 
0.20510E +05 
0.20510E + 05 
0.00000E + 00 

-0.40415E + 02 
-0.28231E + 02 

0.17661E + 02 
0.21619E + 07 
0.12108E + 01 
0.95293E + 02 

CUBE 
(; = 2) 

0.10000E + 01 
0.50000E + 00 
0.70000E + 00 
0.71841E + 04 
0.71841E + 04 
0.00O00E + 00 
O.00O00E + 0O 
0.0O000E + 0O 
0.00000E + 0O 
0.16000E + 06 
0.11202E + 01 
0.61838E + 02 

crystal orientations. The test matrix included three monotonic 
tensile tests, two double tensile tests with a 120-sec hold period 
at zero stress, three fully-reversed fatigue tests, one fatigue test 
with a peak tensile strain hold in each cycle, and one fatigue 
test with a peak compressive strain hold in each cycle. The five 
nominal orientations were [321], [110], [210], [100], and [111]. 
Because of the limited number of samples, each test was not 
repeated for consistency of the response. 

A method for determining elastic constants E, G, and v for 
nickel-base single cyrstal superalloys has been developed 
(Yang, 1984). In the current study, the elastic responses in the 
[100], [111], and [110] orientations were used to calculate 
these values. The values of E, G, and v for Rene N4 at 982°C 
are 81.2GPa, 90.9GPa, and 0.398, respectively. 

The procedure to determine inelastic material constants 
consists of three major steps that can be performed separately 
or in a loop as shown in Fig. 3. Because the model is developed 
primarily for high strain-rate loading conditions, only tensile 
and fatigue tests were evaluated. Using octahedral slip con
stants as an example, in the first step the strain-rate sensitivity 
exponent, nu, orientation dependence factors, Vu V2, and 
K3, saturated state variable values, QSATI a nd Hn, are deter
mined by using saturated data from the tensile tests. The 
second step uses both strain hardening and anelastic recovery 
data from the double tensile test to evaluate the back stress 
constants G,, nn, and F{. In the third step, the remaining 
constants in the drag stress evolution equation, Hn and m,, 
can be evaluated using the cyclic softening or hardening data 
from the fatigue tests. Since the material was almost cyclically 
stable, the hardening equation was not activated, and only the 
initial value Hn was used from the tensile data to predict all 
the fatigue responses. The constitutive model prediction pro
gram is used after each step to provide validation of the con
stants. The material constants determined for single crystal 
Rene N4 at 982 °C are given in Table 3. 

V. Results 

The constitutive model has been implemented in a computer 
code to predict and correlate the material response for each of 
the loading conditions. Correlations and predictions for the 
double tensile tests with a 120-sec hold time in the [100] and 
[111] orientations are shown in Fig. 1. The first loading loop 
was used to calculate the constants. Note that the hardening 
characteristics for the reloading, the recovery (anelasticity) at 
zero stress, and the rate sensitivity effect in these two orienta
tions are all reasonably modeled. The predicted inelastic strain 
histories during the hold period are given in Fig. 2. This 
prediction is very good considering that the measured strain 
values are very small compared to the total strain during the 
test. Using material constants determined from the two 
previous tests, predictions of the response were made for the 
[110] and [321] orientations and are shown in Fig. 4. The 
elastic moduli, strain-hardening characteristics (knee of the 
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Fig. 5 Comparison between experimental data and predicted saturated 
fatigue loop in the: (a) [100]; and (b) [111] and [321] orientations for 
Rene N4 at 982°C 

curve), ultimate stress values, and the strain-rate sensitivity are 
all modeled reasonably well for these two orientations. 

The experimental results for fatigue in [100], [111], and 
[123] orientations at 982°C stabilized within five loops and ex
hibited almost no work hardening or softening throughout the 
specimen life; therefore, the drag stress remained constant. 
The only information used from the fatigue data in determin
ing constants was the tension/compression asymmetry for the 
evaluation of V{, and V2, and V3. This information is used to 
estimate the compressive yield stress since no individual com
pressive tests were performed. The predictions of the loops are 
based purely on constants determined from the tensile tests. 
These predictions are shown in Fig. 5(a) for the [100] orienta
tion and Fig. 5(b) for the [111] and [321] orientations. The 
model has predicted the shape of the saturated loop and the 
tension/compression asymmetry characteristics for each 
orientation. 

The results of fatigue tests with peak-strain holds are shown 
in Figs. 6 and 7 for the [321] and [210] orientations, respective
ly. The tensile-hold fatigue experiment in the [210] orientation 
showed gradual cyclic softening which was not seen in any of 

a 2oo-
0_ 

CO 
GO 
UJ 
CC 

RENE N4 AT 982C 
ORIENTATION: (321 

TEST RATE: 3.0E-4/sec 

- 0 . 0 0 4 0 - 0 . 0 0 2 0 0.0000 0.0020 C 

STRAIN, m m / m m 

Fig. 6 Comparison between experimental data and predicted fatigue 
loop with peak compressive strain hold in the [321] orientation for Rene 
N4 at 982°C 
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Fig. 7 Comparison between experimental data and predicted fatigue 
loop with peak tensile strain hold in the [210] orientation for Rene N4 at 
982°C. Note that the material exhibited cyclic softening 

the other fatigue tests. The reason for this behavior is not 
clear. The model predicted the stress relaxation and the shape 
of the loop quite well for the compressive hold in the [321] 
orientation. 

VI Discussion and Conclusion 

As stated earlier, current model can only be used for 
isothermal loading conditions. Methods for nonisothermal 
calculations by interpolating parameters at a specific 
temperature has been suggested by Bodner (1979) for isotropic 
materials and has been successfully used by Ramaswamy 
(1986) on Rene 80. This method may be successful for Rene 
N4 because Rene 80 and Rene N4 are almost identical in com
position. A nonisothermal model might also be formed by 
allowing the parameter D in the flow equation to be an 
Arrhenius function of activation energy which is dependent 
upon temperature (Brown, 1988). 

Cyclic hardening or softening behavior for Rene N4 does 
not seem to be consistent throughout the experimental pro
gram. For example, softening occurred in the tensile-hold 
fatigue test whereas the other tests were almost cyclically 
stable. This behavior has to be reexamined carefully and im
plementation of the drag stress evolution equation may be 
required. 

Finally, latent hardening, e.g., the hardening of inactive slip 
system due to intersection with active slip system, was not con
sidered in the current model. Latent hardening is generally 
considered to be an important part of the theoretical basis for 
hardening in single crystal plasticity (Asaro, 1983; Havner and 
co-workers, 1977 and 1983; Weng, 1979). However, non-
proportional tests on Rene 80 (Ramaswamy, 1986) did not 
show any latent-hardening behavior. Thus, in the current 
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model with Rene N4, latent hardening was assumed insignifi
cant. Extension of the present theory to nonproportional 
loading still needs to be established. 

In conclusion, a back stress/drag stress constitutive model 
based on crystallographic approach to model single crystal 
anisotropy was presented. The experimental results 
demonstrated the need for the back stress variable in the in
elastic flow equations. Experimental findings also suggested 
that the back stress is orientation dependent and controlling 
both the strain hardening and recovery characteristics. The 
observed stable fatigue loops at 982 °C led to the conclusion 
that the drag stress is constant for this temperature. The con
stitutive model, operated with constants determined only from 
tensile data, was evaluated by using uniaxial tensile, fatigue, 
and strain-hold tests. The model predicted those conditions 
very well. This result verifies a major step in relating the 
macroscopic response to the microstructure of the material. 
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Plane-Strain Shear Dislocations 
Moving Steadily in Linear Elastic 
Diffusive Solids 
This paper derives the stress and pore pressure fields induced by a plane-strain shear 
(gliding edge) dislocation moving steadily at a constant speed V in a linear elastic, 

fluid-infiltrated (Biot) solid. Solutions are obtained for the limiting cases in which 
the plane containing the moving dislocation (y = 0) is permeable and impermeable 
to the diffusing species. Although the solutions for the permeable and impermeable 
planes are required to agree with each other and with the ordinary elastic solution 
in the limits ofV = 0 (corresponding to drained response) and V = oo (corre
sponding to undrained response), the stress and pore pressure fields differ consid
erably for finite nonzero velocities. For the dislocation on the impermeable plane, 
the pore pressure is discontinuous on y = 0 and attains values which are equal in 
magnitude and opposite in sign asy = 0 is approached from above and below. The 
solution reveals the surprising result that the pore pressure on the impermeable plane 
is zero everywhere behind the moving dislocation (x < 0). For the dislocation on 
the permeable plane, the pore pressure is zero on y = 0 and attains its maximum 
at about (2c/V, 2c/V) where c is the diffusivity, and the origin of the coordinate 
system coincides with the dislocation. For the impermeable plane, the largest pore 
pressure change occurs at the origin. 

Introduction 
This paper derives the stress and pore pressure fields induced 

by plane-strain shear (gliding edge) dislocations moving stead
ily, and quasi-statically, in a linear elastic diffusive solid. In 
an ordinary linear elastic solid, the solution for the stress field, 
when viewed in a coordinate system moving with the dislo
cation, is identical to that for the stationary dislocation. In 
contrast, solutions in a diffusive solid are velocity dependent. 
Moreover, this dependence is different when the plane in which 
the dislocation is moving is permeable, or impermeable, to the 
diffusing species. 

Solutions for dislocations provide elementary models of dis
continuities in solids and can be used as a basis for numerical 
methods for treating more elaborate models of cracks (e.g., 
Erdogan and Gupta, 1972; Cleary, 1976; Detournay and Cheng, 
1987). The work here has been motivated by applications to 
slip on faults in the earth's crust (Nur and Booker, 1972; 
Booker, 1974; Rice and Cleary, 1976; Roeloffs and Rudnicki, 
1984-1985; Rudnicki and Hsu, 1988). In this case the diffusing 
species is ground water, and is characterized in terms of an 
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apparent fluid volume fraction and a pore fluid pressure. Al
though the elementary dislocation solutions are only crude 
representations of slip on faults, they can be used to construct 
more realistic slip distributions by superposition. In addition, 
these solutions yield insight into the effects of coupling between 
deformation and fluid diffusion. 

This paper extends and complements previous work by Cleary 
(1978) and Simons (1979) on moving dislocations in diffusive 
solids. Cleary (1978) used the solution for instantaneous in
troduction of opening (climbing edge) and shear (gliding edge) 
dislocations to obtain numerical results for steadily-moving 
dislocations. Simons (1979) formulated the problem of the 
steadily-moving shear dislocation and, using Fourier trans
forms, obtained an expression for the shear stress on the plane 
in which the dislocation is moving. 

The solutions of both Cleary (1978) and Simons (1979) are 
appropriate when the plane on which the shear dislocation is 
moving is permeable to the diffusing species. They do not make 
this assumption directly but note that for the shear dislocation 
on y = 0 with Burgers vector in the x-direction (Fig. 1), the 
pore pressure p is antisymmetric about y = 0. Because they 
assume that the pore pressure is continuous, it must be zero 
on y = 0. However, the flow across y = 0, which is propor
tional to the gradient of the pore pressure dp/dy, is not zero. 
In recent work on instantaneous dislocation solutions for dif
fusive solids, Rudnicki (1986, 1987) has noted that an alter
native possibility is that the plane, y = 0, is impermeable. In 
this case, dp/dy = 0 on y = 0. Because the pore pressure must 
still be antisymmetric about y = 0, it is discontinuous and 
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takes on equal and opposite values as y = 0 is approached 
from above or below. Surprisingly, the solution to be given 
here demonstrates that for the steadily-moving dislocation, this 
value is zero for x < 0. Rudnicki (1987) also treats the opening 
(climbing edge) dislocation for which the assumption of a 
permeable plane requires that dp/dy be discontinuous. 

The solutions for steadily-moving dislocations can, in prin
ciple, be constructed from the solutions for instantaneous dis
locations by the superposition procedure described by Carslaw 
and Jaeger (1959) and implemented numerically by Cleary 
(1978). However, we prefer to follow the approach used by 
Simons (1979) and to treat the moving dislocation problem 
directly using Fourier transforms. This approach is similar to 
that used by Rice and Simons (1976) to solve the related prob
lem of a steadily-moving semi-infinite shear crack. We begin 
by summarizing the governing equations for a linear elastic 
diffusive solid and then formulate the boundary conditions 
for the dislocation problem. The problem is solved by the 
application of Fourier transforms and the results for selected 
field variables are presented graphically. 

Governing Equations 
The constitutive equations for a linear elastic diffusive solid 

were first formulated by Biot (1941) within the context of fluid-
infiltrated soils, but the equations are sufficiently general to 
describe the linearized response of any elastic solid containing 
a diffusing species that can be characterized by two scalar 
variables. For example, they have been used to model the 
response of cartilage (Kuei, 1977; Mow and Lai, 1980) and are 
formally identical to the equations of fully-coupled thermo-
elasticity (Biot, 1956; Rice and Cleary, 1976; Rice, 1979). For 
fluid-infiltrated soil or rock, the two scalar variables charac
terizing the response of the fluid are conveniently taken to be 
the pore pressure p, measured from some ambient value, and 
the fluid mass content per unit volume m, measured from a 
reference value m0. 

Rice and Cleary (1976) achieved an advantageous rearrange
ment of the equations by exploiting the observation that they 
reduce to the usual equations of linear elastic response, but 
with different Poisson's ratios, in the two contrasting limits 
of drained and undrained response. Drained response, with 
Poisson's ratio v, occurs when the deformation is so slow that 
any alterations in pore fluid pressure are eliminated by fluid 
mass diffusion. Undrained response, with Poisson's ratio vu, 
occurs when the deformation is too rapid (but still quasi-static) 
to allow fluid mass to diffuse from material elements. Thus, 
the fluid mass content per unit volume m is equal to its reference 
value m0. In this limit, the alteration of pore fluid pressure p 
is proportional to the negative of the mean normal stress 
okk/3: 

p=-Bokk/3 (1) 

where the coefficient B is called Skempton's coefficient. Values 
of B range from zero to unity, taking on the lower limit for 
a very compressible pore fluid and the upper for separately 
incompressible solid and fluid constituents. More generally, 
deformation will be neither drained nor undrained and, in this 
case, the strains of the solid matrix e,y and the alteration of 
fluid mass content depend on the stress ay and pore pressure 
p as follows: 

condition can be used to eliminate azz from (2a), (2b). The 
results are as follows: 

2Geij=oij-
( l + i.) 

°kiAij+ B(\ + v)(\ + vu) 

m-mn 

9p0(vu-v) 
2GB(l + vu)(\ + v) 

[okk/3+p/B] 

P&ij (2a), 

(2b) 

where G is the shear modulus, p0 is the mass density of pore 
fluid, and btj is the Kronecker delta. In (1) and (2), (/, j) = 
(1,2,3) and summation on repeated indices has been assumed. 
For plane-strain deformation in the xy-plane, ezz — 0 and this 

lGta0 = aa^-v(axx+ oyy)oa)3 + ———- pbafi 

B(l + Pu) 
(3a) 

m-m0= ^ " "\ [(oxx+ oyy)/2 + 3p/2B(\ + vu)\ (3b) 
UtS(\ + vu) 

where, now, (a, /3) = (1, 2). The final constitutive equation 
is Darcy's law which states that the flow rate per unit area, 
qa, is proportional to the negative of the gradient of the pore 
pressure: 

Qa= -p0Kdp/dxa (4) 

where the coefficient K is a permeability (Rice and Cleary, 
1976). 

In addition to the constitutive equations, there are field 
equations expressing equilibrium, compatibility of strains, and 
fluid mass conservation. For plane-strain deformation, these 
can all be written in terms of the stress and pore pressure by 
using the constitutive equations (Rice and Cleary, 1976). The 
results are as follows: 

dOxx/dx+doyx/dy^Q (5a) 

doXy/dx + dOyy/dy = 0 (5b) 

V2[<jXx + Oyy + 2-np\=Q (6) 

(cV2-d/dt)[oxx+<Jyy+(2ii/n)p]=0 (7) 

where r, = 3 (vu - v)/[2B(\ + vu) (1 - v)}, n = (vu - v)/(\ 
- v) and V2 ( . . . ) = d2 (. . .)/dx2 + d2 (. . .)/dy2. The dif-
fusivity c is given by 

c = 2GKB2(1 - v)(l + vu)
2/[9(l - vu)(vu- v)]. (8) 

Equations (5) express equilibrium in the absence of body forces, 
(6) compatibility, and (7) fluid mass conservation. As noted 
by Rice and Cleary (1976), the quantity [a„ + ayy + (2rj//i0p] 
is proportional to the fluid mass content per unit volume. 

Formulation of Boundary Conditions 
We consider a shear dislocation on the x-axis moving steadily 

in the positive x-direction at constant speed V (Fig. 1). The 
speed is assumed to be low enough that inertial effects can be 
neglected. For steady motion in the x-direction, the displace
ments and stresses depend on time only in the combination X-
Vt. Consequently, explicit dependence on time / can be elim
inated by adopting a coordinate system that moves steadily 
with the dislocation. In this coordinate system, a shear dis
location at the origin corresponds to introducing the following 
discontinuity in the x-direction displacement: 

Ux(x,y = 0+)-ux(x,y = 0~) = bH(-x) (9) 

where b is the magnitude of the discontinuity, H(. . .) is the 
unit step function, and the notation^ = 0+ (0") indicates that 
the x-axis is to be approached from above (below). Because 
ux is antisymmetric with respect to y - 0, this equation can 
be written as 

ux(x,y = 0+) = (b/2)H(-x). (10) 

f— 
Fig. 1 Coordinate systems for a dislocation steadily moving at a speed 
V. The xy-system moves with the dislocation. 
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The normal stress components a^ and ayy, and the pore 
pressure p, are also antisymmetric about y = 0. Because the 
traction on y = 0 must be continuous, ayy equals zero there: 

ayy(x,y = 0) = 0. (11) 

If the pore pressure is required to be continuous, then it also 
equals zero on the x-axis: 

p(x,y = 0) = 0. (12) 

In this case, dp/dy will not generally be zero on the x-axis. 
Consequently, according to Darcy's law (4), flow will occur 
across this plane and, hence, it is permeable. Another possi
bility, however, is that the plane is impermeable. In the context 
of application to a fault in the earth's crust, this can occur 
because the fault contains clay or fine-grained gouge material 
that is much less permeable than the surrounding rock. From 
Darcy's law, the condition enforcing the requirement of no 
flow across the x-axis is 

dp 

dy 
(x,y = Q) = Q. (13) 

Now, the pore pressure need not be zero on the x-axis (although 
we will show that it turns out to be zero on x < 0). It is still 
required, however, to be antisymmetric about y = 0 and, 
hence, will taken on equal and opposite values as the x-axis is 
approached from above or below. 

Because the governing equations (5)-(7) are expressed in 
terms of the pore pressure and stress, it is convenient to rewrite 
(10) in terms of these quantities. Differentiating (10) with re
spect to x yields 

e„(x,0+) = j * (x,0+) = (-b/2)SDmAC(x) (14) 

where SD1RAC(x) is the Dirac delta function and the first equal
ity in (14) is the result of the strain displacement relation. 
Using the constitutive equation (3a) to evaluate e^Qc, 0+) and 
(11) yields the desired boundary condition in terms of the stress 

tr„(x,0+) + 2 J ,p(x,0+)= - [Gb/(l-v)]5D1RAC(x) (15) 

where rj has been introduced following (7). 
Thus, the problem has been reduced to the solution of the 

field equations (5)-(7) subject to the boundary conditions (11) 
and (15) with (12) for the permeable plane and (13) for the 
impermeable plane. 

Solution for the Permeable Plane 

The solution procedure is to use the Fourier transform on 
x. The Fourier transform of a function f(x, y) is defined by 

«o0 = \°_ f(x,y)exp(-iKx)dx (16) / ( 

with inversion 

f(x,y) =F-*[f(K,y)] = j - J_oB/(Kj;)exp(ua)rfK (17) 

where t = ( - 1)1/2. Except for (7), the governing equations are 
identical in the stationary and moving coordinate systems. 
Because the dislocation has been assumed to be propagating 
steadily in the x-direction, the time derivative 3(. . .)/dt in (7) 
can be replaced by - Vd(. . .)/dx. Applying (16) to (5)-(7), 
with the substitution just mentioned in (7), yields equations 
identical to those solved by Rice and Simons (1976). Their 
solution for the Fourier transformed stress and pore pressure 
is as follows: 

1 
(dxx + ayy)=A(K)e~m^y + B(K)e-"^y 

•qp= -)xA(K)e mU)y _ B(K)e nt,K)y 

(18) 

(19) 

m(n) 
C(n)+iKyA(K) [e -m(K)y 

-2(c/V)n(K)B(K)e~"<'» 

(Syy-dxx) = \C(K)+A(K)m(K)y]e~">^> 

K2 + H2(K) „ , , 
+ 1 ~^B{K)e-My 

K2-n2(K) 

(20) 

(21) 

where m2 (K) = K2 and «2(/c) = K2 - LKV/C. TO ensure con
vergence of the inversion integrals in y > 0, W(K) and «(K) are 
subject to the following restrictions: 

Re[w(/c)]>0 (22) 

Re[«(K)]>0 (23) 

where Re[. . .] stands for "the real part of." The functions 
A, B, and Care to be determined by the boundary conditions. 

Taking the transforms of the boundary conditions for the 
permeable plane, (11), (12), and (15), substituting (18)-(21), 
and solving for A, B, and C yield the following results: 

B(K)=-ixA(K) = Gbix[2(l-vu)] (24) 

C(K) = Gb[l + IX(2C/V)IK]/[2(1 -UU)]. (25) 

When these are substituted back into (18)—(21), terms not in
volving «(K) can easily be inverted. For example, the first term 
in the expression for the pore pressure involves the following 
inversion integral: 

1 p 
Hx,y)= — J_oo exp[-m(K)y]exp(iKX)dK. (26) 

This integral can be converted to a Fourier cosine transform 
by noting that the restriction (22) requires that m(/c) be an even 
function of K and its value can be obtained from standard 
tables (e.g., Erdelyi et al., 1954): 

I(x,y) =y/(*ri) (27) 

where r2 = x2 + y2. Other terms not involving n(x) can be 
inverted by differentiating or integrating (27). Consequently, 
the stresses and pore pressure due to steady motion of a shear 
dislocation on a permeable plane can be written as follows: 

\ («r„ + oyy) = - A[(2j;/r2) - yK(xty)\ (28) 

r,p = ^l(.2y/r2)-K(x,y)] 

oxy = A[2x(x2-y2)/r4]+A(2nc/V) 

1 

M 

dy 
+ 2(y2-x2)/r4 

(29) 

(30) 

(<jyy-axx) = A(4x2y/r*) 

dK 
(4xy/r*) + — + (V/2c)K 

dx 
-A(2nc/V) 

where A = Gb/[4ir(l - vu)} and 

K(x,y) = J_oo exp[iKX-n(K)y]dic. 

(31) 

(32) 

Equations (30) and (31) can be written more compactly by 
combining them as follows in complex form: 

T= 2 (<Jyy~(Jxx) + l <V (33) 

The result is then 

T = 2Aix/?-2Ali(c/V)[{2i/{2) + (V/2c)K+2dK/dZ} (34) 

where f = x + y and 2 3(. . .)/9f = d(. . .)/dx - i d(. . . ) / 
dy. In the limit F—• oo, the integral K(x, y) vanishes and, 
consequently, equations (28), (29), and (34) yield the solution 
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for the stresses due to introduction of a shear dislocation in 
an ordinary elastic solid with Poisson's ratio vu. The pore 
pressure is equal to - 5 ( 1 + v^ip^ + cryy)/3, as appropriate 
for undrained plane-strain deformation. 

Calculation of the inversion integral (32) can be accom
plished by noting that for appropriately chosen branch cuts, 
the integrand is an analytic function of K. The restriction (23) 
can be met by choosing branch cuts for H(K) on the imaginary 
axis from K = i V/c to K = oo and from K = 0 to K = —oo. 
Now the path of integration can be changed from the real axis 
to a path on which the exponent is real and negative, subject 
to the restriction (23). The resulting integration paths (for 
x > 0 and x < 0) do not intersect the branch cuts and the 
integral can be written as follows (some details for calculation 
of similar integrals are given in the Appendix): 

K{x,y) = 2y(V/2cYe 2„(-Vx/2c) {^_X)U2e-(Vr/2c)id^ ( 3 5 ) 

This integral can be expressed in terms of Ku the modified 
Bessel function of order one (Abramowitz and Stegun, 9.6.23, 
1964), and the result for K(x, y) is 

K(x,y) = (2y/r2) (Vr/2c)Kx (V/72c)exp(- Vx/2c). (36) 

The derivatives of K can be calculated by using the following 
relation (Lebedev, 1972, p. 110) 

^-lzKl(z)]=-zK0(z) 
ctz 

where K0 is the modified Bessel function of order zero. Sub
stituting into (28), (29), and (34) yields the final expressions 
for the stress and pore pressure due to a shear dislocation 
moving on a permeable plane: 

i ( f f „+a , , )= -A(2y/r*){l-ix[l-w(x,y)]} (37) 

vp = ^A(2y/r2)w(x,y) (38) 

r = 2Aur/f2 - (4At/i/f2)(c/K) w(x,y) 

+ An (V/c) (j>/f )e~ Vx/2cK0(Vr/2c) (39) 

where 

w (x,y) = 1 - (Kr/2c)exp( - Vx/2c)K{ (Vr/lc). (40) 

The expression for the pore pressure (38) has been given pre
viously by Roeloffs and Rudnicki (1984/85) and the expression 
for axy on y = 0, obtained from (39), reduces to that given by 
Simons (1979): 

where 

ajxfl) = (2A/AT) [ ! - / * & ( Vx/2c)} 

gp(z)=z-lll-\z\e-'Kl(z)) 

(41) 

(42) 

As noted previously, the first term in each expression (i.e., the 
term not multiplied by n) is the undrained response appropriate 
in the limit V -~ oo. In the contrasting limit V — 0, p= 0 and 
the expressions for the stress components reduce to the usual 
ones of linear elasticity with the drained value of Poisson's 
ratio (v). 

Solution for the Impermeable Plane 
Solution for the shear dislocation moving steadily on an 

impermeable plane proceeds along similar lines. The Fourier 
transformed solution of the field equations (5)-(7) is again 
(18)—(21). Now, however, the boundary condition (12) is re
placed by (13). The resulting solutions for A, B, and C are as 
follows: 

B(n)=-fimWA(K)/n(K)=2*Aiim(K)/n(K) (43) 

C(K)=2vA[l+(2c/V)iuicm(K)/n(K)] (44) 

where, again, A = Gfr/[4ir(l — »>„)], and m(K) and «(K) are 
defined following (21). Substituting into (18)—(21) and, as in 
the case of the permeable plane, inverting terms not involving 
H(K) yields 

- (<7« + ayy) = A {(2y/r2) - iiH(x,y)} 

W = A^{{2y/r2)-H(x,y)} 

T = (2Aoc/?)-AijH(x,y) + (4c/K) - (H-L) j 

(45) 

(46) 

(47) 

where 

H(x.. 

L(x,y)--

,y)= \'_ [m(K)/n(K)]exp[LKX-n(ic)y]dK (48) 

[m(K)/n(K)]exp[iKX-m(K)y]dK (49) 

and expressions for axy and (ayy — a^) have been combined 
in complex form. 

In contrast to the solution for the permeable plane, the 
integrals (48) and (49) cannot be expressed in terms of tabulated 
functions. However, they can be simplified and written in a 
form more suitable for numerical evaluation by means of the 
same procedure outlined in connection with K(x, y) (see equa
tion (35)): choosing branch cuts appropriately to meet the 
restrictions (22) and (23) and converting the integral to a con
tour on which the exponent is real. Some details are given in 
the Appendix. The results are as follows: 

H(x,y) = ^r - (V/c)e~ Vx/2c I (1 + UCOS0) 
(l_„2)l/2 e-(Vr/2c)udu 

2 f°° 
L(X,y)=-)Q 

where tan0 = y/x and 

sin 4> = 

-qiG'-H du 

,(u-Vx/c)2+(Vy/c)2lm 

u cos0 - Vr/c 

(50) 

(51) 

(52) 
\(u-Vx/c)2+(Vy/c)2\1/r 

Derivatives of H, which appear in (47), can be calculated from 
(50). However, the derivatives of L can be expressed more 
compactly by first differentiating (49), then manipulating as 
to obtain (51). The result is 

dL 

3f 

w3/2e "exp 
i 

? 
<-i) /2\du 

(u-Vx/c)2+ Vy/cy\ 2 I 1/4 (53) 

These suffice to determine the full solutions for the stress and 
pore pressure, but for brevity only the pore pressure and the 
shear stress axy on y = 0 are displayed here. The structure of 
the solution is identical to that for the permeable plane. That 
is, the first terms in (45)-(47) give the undrained response 
appropriate to the limit V — oo; in the limit V — 0, the 
expressions can be shown to reduce to the usual ones of linear 
elasticity with Poisson's ratio v as appropriate to drained re
sponse. 

The pore pressure, obtained from substitution of (50) into 
(46), yields 

. f1 (1+HCOS0) 
J-cosfl rjp = A/x(K/c)e" •e-{Vr/2c)udU- (54) 

(l_„2)l/2 

The shear stress on y = 0 is obtained by extracting the 
imaginary part of (47) after substituting (50) and (53) and 
setting y = 0. The result can be expressed in the same form 
as (41) with gp replaced by g,- defined as follows: 
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Vy/2c 

5.0 -

Fig. 2 Contours of constant nondimensional pore pressure (56) for the 
dislocation on the permeable plane. The dashed contour indicates a 
negative value. Values for y < 0 are equal In magnitude and opposite 
in sign to those shown. 

1 0 . 

Vy/2c 

O.O 

Vx/2o 
Fig. 3 Same as Fig. 2 for the dislocation on an impermeable plane 

g,(z)=4z 
J' (u-( « - ! ) ' 

le-^du-^ , z>0 

gi(z)=4z 
J1 (1 + H)1 

(55) 

-2\z\u •du- z<0. 
( l+H) 1 / 2 ~ " " 4Z

2_ 

In the next section, some features of these solutions are 
discussed, compared with the solutions for the permeable plane 
and displayed graphically. 

Discussion 

As has already been emphasized, the solutions for the perme
able and impermeable planes agree, as they must, in the limits 
of drained and undrained response corresponding to V — 0 
and V~ oo, respectively. Differences in the solutions for finite, 
nonzero velocities are due to the different boundary conditions 
for the pore pressure ((12) and (13)) on y = 0. In this section, 
we focus on the differences between the solutions as mani
fested by the shear stress on y = 0 and the pore pressure. 

Figures 2 and 3 show contours of the nondimensional pore 
pressure, defined as 

P= 
4(l-vu)v 

P, (56) 
G(Vb/c)fiJ 

for the permeable (Fig. 2) and impermeable (Fig. 3) planes. 
These plots are for y > 0; values for y < 0 are equal in 
magnitude and opposite in sign. As required by the boundary 
condition (12), the pore pressure change is zero on the perme

able plane. The maximum pore pressure change occurs off the 
dislocation plane at about (Vx/2c, Vy/2c) » (1, 1). Figure 2 
also shows that there is a wake of pore pressure decrease, (p 
< 0), extending behind the edge of the slip discontinuity at 
the origin. This feature of the solution has been discussed in 
detail by Roeloffs and Rudnicki (1984/85) and, as noted by 
them, results from the differing response of the fluid mass 
content (m - m0) and mean normal stress at a fixed point off 
the dislocation plane as slip approaches. 

Figure 3 shows the corresponding contours of the nondi
mensional pore pressure for the impermeable plane. As re
quired by the boundary condition (13), the contours intersect 
the *-axis at right angles. In contrast to the solution for the 
permeable plane, the maximum pore pressure change occurs 
on y = 0, and, although not evident from the contour plot, 
at x = 0. As a result, the solution predicts flow of pore fluid 
along x = 0 away from the origin. In further contrast to the 
solution for the permeable plane, the pore pressure change is 
everywhere positive in y > 0. This evidently results because y 
= 0 is a barrier to fluid flow and hence the increase in pore 
pressure in the first quadrant due to the approaching dislo
cation cannot be dissipated by flow across y = 0 to the region 
of pore pressure decrease, as occurs for the permeable plane. 
As indicated in Fig. 3, the pore pressure change is, however, 
small in magnitude behind the dislocation (x < 0). Indeed, as 
to be discussed shortly, the pore pressure is identically zero 
for x < 0 and y = 0. 

Figure 4 plots the nondimensional pore pressure change for 
the permeable (dashed) and impermeable (solid) planes against 
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^ 0.25 

V y / 2 c = 0 . 1 

-4.0 -2.0 0 2.0 4.0 
Vx/2c 

Fig. 4 Comparison of the nondimensional pore pressure induced by 
dislocations on a permeable (dashed) and impermeable (solid) plane. 
Results are shown as a function of Vxl2c for Vyl2c = 0.1 and 1.0. 

Vx/2c for two fixed distances from the slip plane: Vy/2c = 
0.1,1.0. Because the propagation is steady, these curves, when 
read from right to left, give the time history of the response 
at a fixed point as the dislocation moves past. As shown, the 
magnitude of the pore pressure change is much greater near 
the impermeable plane than the permeable, but decreases more 
rapidly with distance from the slip plane. Figure 4 also shows 
the sign reversal of the pore pressure change for the permeable 
plane. Also noteworthy is the rapid decrease of the pore pres
sure change for the impermeable plane for x < 0 and Vy/2c 
= 0.1. 

Roeloffs and Rudnicki (1986) have given results similar to 
those shown in Fig. 4, and have discussed their implications 
for the interpretation of water well level changes in response 
to propagating slip events in the earth's crust. Their results 
for the impermeable plane are, however, obtained by direct 
numerical inversion of the Fourier transformed expression for 
p rather than by (54). They note that as a result of the sign 
reversal for the permeable plane, there will be a cancellation 
of positive and negative contributions to the pore pressure 
when the elemental dislocations are superimposed to model 
more elaborate slip distributions. This will further diminish 
the magnitude of the pressure change for the slip on the perme
able plane as compared with that for the impermeable. 

A surprising result of the solution is that for the impermeable 
plane, the pore pressure is identically zero for y = 0 and x < 
0. This is evident from (54), since cos(ir) = - 1, but can also 
be deduced directly from (48): For y = 0, and the branch 
cuts as specified by (22) and (23), the integrand is analytic for 
Im(«) < 0; hence, for x < 0, the integral can be computed 
with zero result by closing the contour at infinity in the lower 
half-plane (see the Appendix for more details). Thus, both p 
and dp/dy are zero on y = 0 for x < 0. For x > 0 and y = 
0+, (54) can be expressed in terms of tabulated functions as 
follows: 

P(x,0+) = e~Vx/2<:{I0(.Vx/2c)-Il(Vx/2c)} (57) 

where P is given by (56) and I0 and ^ are modified Bessel 
function (Abramowitz and Stegun, 9.6.18, 1964). As x — 0 
through positive values, the right-hand side of (57) approaches 
unity and, hence, the pore pressure induced on the impermeable 
plane y = 0+ is discontinuous at x = 0. This is reflected by 
the bunching of contours near the origin in Fig. 3. More gen
erally, the behavior of the pore pressure as r —• 0 can easily 
be shown from (54), to be given by 

- P E R M E A B L E 

IMPERMEABLE 

.O 

Vx/2c 

~I 
2.0 

~1 
4.0 

Fig. 5 Comparison of the functions gp (42) and g, (55) appearing in the 
expressions for the shear stress on y = induced by a dislocation moving 
on a permeable (gp) and impermeable (g) plane 

As an example of the effect on the stress field of the fluid 
flow boundary condition on y = 0, Fig. 5 plots the functions 
gp{ Vx/2c) and g,( Vx/2c). These appear in the expressions for 
the shear stress on y = 0 (41) for the permeable (42) and 
impermeable (55) planes. Because these expressions must re
duce to the drained value at V = 0 and the undrained value 
as V — oo, both gp and g,- equal unity when their arguments 
are zero and approach zero when their arguments become 
unbounded. However, as depicted in Fig. 5, the values for 
finite, nonzero V are considerably different for the permeable 
and impermeable planes. Interpreted in another way, the dis
tribution of shear stress on y = 0 differs in the two cases. In 
particular, g,- decays more rapidly with distance from the origin 
than gp. Moreover, g,- becomes negative at approximately Vx/ 
2c = 1.0 and approaches zero through negative values when 
its argument is positive. (Note, however, that the shear stress 
itself does not reverse signs.) Because g,- < gp for x > 0, except 
very close to x = 0, the shear stress induced on y = 0 ahead 
of a dislocation moving on an impermeable plane exceeds that 
for a dislocation on a permeable plane. In addition, because 
g, < 0 for Vx/2c < 1, the shear stress on this portion of the 
impermeable plane exceeds the undrained value (the first term 
in (41)). A similar feature was noted in the solution for a 
dislocation instantaneously introduced on an impermeable 
plane (Rudnicki, 1986, 1987). 

As noted earlier, the expression for gp has been derived 
previously by Simons (1979) and has been given graphically 
by Cleary (1978) who obtained the result by numerically in
tegrating the appropriate expression from the solution for in
stantaneous introduction of a stationary dislocation (on a 
permeable plane). Our results appear to agree with those given 
by Cleary (1978). 

Slip on faults in the earth's crust depends not only on the 
shear stress but also on the effective normal stress: that is, 
oyy + p, the total normal stress plus the pore pressure (e.g., 
Jaeger and Cook, 1976; Rice, 1980). More specifically, an 
increase in compressive effective normal stress inhibits slip. 
For a dislocation propagating on an impermeable plane, the 
effective normal stress increases in compression on the side 
where p decreases, (y = 0~), and decreases on the side where 
p increases (y = 0+). Because the impermeable plane idealizes 
a narrow, but finite-width fault zone, it is likely that slip 
propagation will follow the path of least resistance and the 
reduction of effective compressive stress on one side of the 
fault promotes slip. The magnitude of this effect is shown in 
Fig. 6 which plots the following quantity: 

np = iiA(V/c)\w-e+ -sin(20)j. (58) 4/(Vx/2c) = 
4 T T ( 1 - Q 

GVb/c 
<jxAx,0+)+fp(x,0+)). (59) 
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Vx / 2 c 

Fig. 6 Plot of 4T(1 - c j [ax, + fp]l(GVb/c) on y = 0+ for the dislocation 
moving on an impermeable plane and a permeable plane (p = 0 for the 
permeable plane). The dashed line shows only the first term for the 
impermeable plane. Actual plot is for / = 0.6, p = 0.2, >; = 1.38p. 

The coefficient of friction / (taken to be 0.6) multiplies the 
effective normal stress ayy + p, but oyy vanishes on y = 0. 
Also shown, for comparison, is the first term alone and the 
corresponding quantity for the permeable plane. The latter is 
identical to axy because p = 0 on y = 0 for the permeable 
plane. As noted in the discussion of Fig. 5, the shear stress 
ahead of the dislocation on an impermeable plane exceeds that 
on a permeable plane. Furthermore, the contribution to \p from 
the decrease in effective normal compressive stress due to the 
increase of pore pressure on y = 0+ further elevates the driving 
force for slip. Because the pore pressure is bounded at x = 0, 
this contribution is overwhelmed there by the shear stress which 
is singular at x = 0. Nevertheless, for more elaborate models 
of slip that require the shear stress at the edge of the slipping 
zone to be bounded, the effect of the pore pressure will be 
significant. 

Although we do not consider here problems of steadily-
moving opening dislocations, results for the instantaneous in
troduction of stationary dislocations (Rudnicki, 1987) suggest 
that the same functions g, and gp appear in corresponding 
expressions for the normal traction (pyy) on y = 0 for an 
opening dislocation (Burgers vector in the ^-direction). That 
is, if p = 0 on y = 0, the normal traction induced by an 
opening dislocation is given by (41) and, if dp/dy = 0 on y 
= 0, by (41) with g,- replacing gp. More specifically, Rudnicki 
(1987) found that the time-dependence of the shear traction 
ahead of a shear dislocation on an impermeable plane is iden
tical to that for the normal traction ahead of an opening dis
location on an impermeable plane. The corresponding result 
holds for the permeable plane. (For an opening dislocation on 
y = 0, the boundary condition dp/dy = 0 on y = 0 arises 
from symmetry and continuity of the pore pressure, whereas 
p = 0 requires a discontinuity in dp/dy. The latter can be 
interpreted as the limiting case of a very narrow zone with an 
extremely high permeability in the x-direction.) Cleary (1978) 
gives results for the steadily-moving opening dislocation but, 
unfortunately, the function corresponding to gt here is ex
pressed as the difference between two functions which are only 
presented graphically. Our results for g,- appear to be consistent 
with those given by Cleary (1978), but a detailed comparison 
is not possible. 

A similar correspondence to that for the velocity dependence 
of tractions for opening and shear dislocations has also been 
found for cracks, which, of course, can be regarded as con
tinuous distribution of dislocations. Rice and Simons (1978) 
solved the problem of a shear (Mode II) crack propagating 
steadily on a permeable plane and Koutsibelas (1988) has re

cently solved the analogous problem for the impermeable plane. 
In both cases, the stress field near the edge of the propagating 
crack has the well-known universal spatial dependence for 
cracks in linear elastic solids but, in contrast to the results for 
ordinary elasticity, the stress intensity factor is a function of 
velocity. The form of this function for the shear crack depends 
on whether the crack plane is permeable or impermeable. How
ever, Koutsibelas (1988) found that the velocity dependence 
for the shear crack was identical to that found by Ruina (1978) 
for the opening crack with the boundary condition dp/dy = 
0 imposed on the crack plane. 
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A P P E N D I X 
This appendix gives some details of the manipulation of the 

inversion integral H(x, y) given by (48) and repeated here for 
convenience: 

H(x,y) - j : 
m(/c) 

n{K) 
exp[iioc - n (ic)y]dK (Al) 

where W(K) and «(K) are defined following (21) and are subject 
to the restrictions (22) and (23). Manipulation of K (32) and 
L (49) can be accomplished similarly and will not be discussed 
in detail. In each case the procedure is to choose the branch 
cuts consistently with the restrictions (22) and (23), and then 
transform the integration path to one in the complex plane 
along which the exponent is real and negative. 

It will be convenient to make the change of variable 

a = K-iV/2c (A2) 

so that 

n2(a)=a2+(V/2c)2. (A3) 

To facilitate the choice of the branch cuts, write n(a) as the 
following product 

n(ot)=n+(a)n_(a) (AA) 

where n±(ct) = (a ± iV/2c){n. To enforce the restriction 
(23), the branch cut for n + (a) is taken along the imaginary a-
axis from - i V/2c to - too and that for n _ (a) from i V/2c to 
too. Hence, n + (a) and n_(a) are analytic in the half-planes 
Im(a) > - iK/2c and Im(a) < iV/2c, respectively. Similarly, 
we let 

m(a)=n+ (a)m^(a) (A5) 

where w_(a) = Mm [a + (iV/2c) - e)1 / 2 is analytic for Im(a) 

< -iV/2c + te. With these definitions, the integral can be 
written as follows: 

f<»l(v2c m-(a) 
H(x,y)=exp(-Vx/2c) — - txp[iax-n(a)y}da 

(A6) 

where the branch cuts and integration contour are shown in 
Fig. 7. Before proceeding, we note that when y = 0, the 
integration can be accomplished by closing the contour in the 
upper (lower) half-plane for* > (<)0. Because the integrand 
is analytic in the lower half-plane for y = 0, H vanishes for 
x < 0, y = 0. Hence, so does the pore pressure, as discussed 
in the body of the paper. 

The integration can be accomplished by wrapping the con
tour around the branch cuts. However, an expression that is 
more compact and amenable to numerical evaluation is ob
tained by transforming the contour of integration to one on 
which the exponent is real and negative, subject to (23). This 
contour is given by 

a±(s) = (ixs/r2) ± (y/r2)^- ( Vr/2c)2]w2 (Al) 

where Vr/2c < s< oo. For x > 0, a+ (s) and a_ describe the 
right and left branches of a hyperbola in the upper half-plane. 
As shown in Fig. 7, the hyperbola intersects the branch cut 
for m_(a)sAa = iVx/2cr, corresponding tos = Vr/2c. Thus, 
for x > 0, the integral can be evaluated along the contour 
ABCDEF. 

The result is given by (50) where the first term is the due to 
integration along the arcs of the hyperbola (AB and EF) and 
the second from integration along the branch cuts (BC and 
DE). There is no contribution from integration around the 
branch point (CD). The corresponding calculation for x < 0 
yields a result of identical form. 

Calculation of the integral K(x, y) given by (32) is accom
plished by the same method. However, in this case, the inte
grand does not involve m(a) and, as a consequence, the path 
of integration involves only the hyperbola specified by (Al) 
and there is no need to detour around the branch cut. 

Manipulation of the integral L (x, y) (49) to yield (51) follows 
similar steps. Begin by letting 

m(K) =m+ ( K ) / ? 3 _ ( K ) 

where m±(n) = lim (K ± te)1/2 with the branch cut for m±(n) 
e-0 

chosen from K = Tie to =Ftoo. Similarly, decompose «(K) as 
follows 

« ( K ) =m+ ( K ) « _ ( K ) 

with n_ (K) = (K - iV/c)i/2 having a branch cut from K = 
iV/c to K = too. With these definitions, the integral becomes 

L(x,y)= J exp ( LKX - m (K)y} da. 

A contour on which the exponent is real and negative is given 
by the same form as (Al) with V/2c replaced by e. This contour 
does not intersect any branch cuts. Conversion of the path of 
integration to this contour yields 

(m(K+)m_(K+y, 
L(x,y) = lim 2 

e-0 J " 
Re \ds 

(s2-r'-e2)1'2 " \ n_(K+) 

where K+ = (ixs/r2) + (y/r2) [s2 - eV]1 / 2 . The result (51) 
follows from taking the limit and evaluating ( . . . ). 
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Plane-Strain Crack-Tip Fields for 
Pressure-Sensitive Dilatant 
Materials 
Plane-strain crack-tip stress and strain fields are presented for materials exhibiting 
pressure-sensitive yielding and plastic volumetric deformation. The yield criterion 
is described by a linear combination of the effective stress and the hydrostatic stress, 
and the plastic dilatancy is introduced by the normality flow rule. The material 
hardening is assumed to follow a power-law relation. For small pressure sensitivity, 
the plane-strain mode I singular fields are found in a separable form similar to the 
HRR fields {Hutchinson, 1968a, b; Rice and Rosengren, 1968). The angular dis
tributions of the fields depend on the material-hardening exponent and the pressure-
sensitivity parameter. The low-hardening solutions for different degrees of pressure 
sensitivity are found to agree remarkably with the corresponding perfectly-plastic 
solutions. An important aspect of the effects of pressure-sensitive yielding and plastic 
dilatancy on the crack-tip fields is the lowering of the hydrostatic stress and the 
effective stress directly ahead of the crack tip, which may contribute to the exper
imentally-observed enhancement of fracture toughness in some ceramic and poly
meric composite materials. 

1 Introduction 
In classical plasticity theories, it is generally assumed that 

hydrostatic pressure has no effect on material plastic defor
mation, and plastic dilatancy is neglected. These theories are 
applicable mainly to dense metals. In contrast, rocks, con
cretes, soils, and other porous materials exhibit pressure-sen
sitive yielding and plastic volumetric deformation. Recently 
toughened structural polymers and ceramics due to their out
standing mechanical properties have attracted tremendous re
search attention. Experimental results on the mechanical 
behavior of these two classes of materials support a constitutive 
description that accounts for pressure-sensitive yielding and 
plastic dilatancy for these materials. 

Spitzig and Richmond (1979) observed that for polymeric 
materials (polyethylene and polycarbonate) the flow stress has 
a significant dependence on the hydrostatic stress. Carapellucci 
and Yee (1986) performed biaxial tension tests on glassy bis-
phenol A—polycarbonate and found that a modified Mises 
yield criterion with a dependence on the hydrostatic stress fits 
their experimental data well. Sue and Yee (1988) investigated 
the toughening mechanisms in a multiphase alloy of Nylon 
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6,6/Polyphenylene oxide, and found that there is a consid
erable amount of plastic volumetric change in the composite 
material due to the formation of crazes at large strain. They 
concluded that toughening of this material can be achieved by 
inducing a large amount of volumetric deformation due to 
crazing and subsequent shear yielding around a crack tip. The 
phenomenon of pressure-sensitive yielding is also observed in 
transformation toughened Zr02-containing ceramics (for ex
ample, see Chen and Reyes Morel (1986) and Reyes-Morel and 
Chen (1988)). 

From the viewpoint of phenomenological fracture mechan
ics, the initiation and growth of a crack depend on the sur
rounding stress and deformation fields near the tip. Therefore, 
analyses of the crack-tip stress and deformation fields are 
important to relate continuum stress analyses to microme-
chanical failure mechanism. The asymptotic crack-tip fields 
for power-law hardening materials (the well-known HRR fields) 
have been presented by Hutchinson (1968a, b) and Rice and 
Rosengren (1968). Recently, Pan and Shih (1986, 1988) ob
tained the crack-tip fields for power-law hardening orthotropic 
materials. These fields are of the HRR type, and the defor
mations of these fields are volume preserving. An example of 
the HRR type crack-tip fields with volumetric deformation 
was presented by Hutchinson (1983) for power-law creep ma
terials undergoing creep-constrained grain boundary cavita
tion. 

In this study we investigate the crack-tip stress and strain 
fields for pressure-sensitive dilatant materials under plane-
strain conditions. A simple hydrostatic stress-dependent yield 
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criterion and the normality flow rule are used to account for 
the pressure-sensitive yielding and plastic dilatancy. Within a 
limited degree of pressure sensitivity, mode I crack-tip fields 
for power-law hardening materials are obtained. The crack-
tip fields depend on the pressure sensitivity parameter, /x, and 
have a separable form. When JX = 0, they exactly match the 
HRR results. Our low-hardening solutions for power-law hard
ening pressure-sensitive materials agree well with the corre
sponding perfectly-plastic slip line solutions. 

2 Constitutive Relations 
Motivated by the work of Spitzig and Richmond (1979) for 

polymers and the work of Reyes-Morel and Chen (1988) for 
ceramics, we adopt a simple pressure-sensitive yielding crite
rion that contains two stress invariants, the effective shear 
stress re and the hydrostatic stress am. The yield criterion is 
written as 

M<ty) = re + n am = Q, (1) 
where 

Te = (S;j$;j/iy Sr, = Or, Om°ij> ff» ff*jt/3, 

and (̂ffy) represents the current yield surface in the stress space. 
The material constant n measures the pressure sensitivity of 
yielding. The characteristic yield strength Q can be taken to 
depend upon the plastic work WP. More information on the 
pressure-sensitive yield criterion can be found, for example, 
in Drucker (1973). 

We introduce the generalized effective shear stress rge and 
the generalized effective stress age as follows: 

re + ii a m 

and 

where 

re = V 3 Tge = ae + V 3 /x am, 

°e=*flTe = (3.S,yV2)1/2 

(2) 

(3) 

(4) 
is the conventional effective stress. The yield criterion (equa
tion (1)) can be restated as 

or 

re + li<jm = Q(WP), 

= ae + V3/*am = SQ{W). 

(5) 

"ge ~ "e ' V -> V "m — V -> « V " J- ( 6 ) 

The outward normal of the yield surface in the stress space is 

dHfjj) drge sh 

don boy 2T« 
(7) 

A direct measurement of the pressure sensitivity factor /x 
relies on shear experiments under pressure. It can be obtained 
from the difference between the compressive yield strength <rc 

and the tensile yield strength a, through the relation (Needle-
man and Rice, 1978) 

(8) 

An alternative method to determine p is to perform compres
sive or tensile tests under pressure p. For compressive tests, 
let o? denote the compressive yield strength in the absence of 
pressure, and <fc denote the compressive yield strength when 
superimposed by hydrostatic pressure p. If the experimental 
data can be fitted by the linear relation (Chen and Reyes Morel, 
1986) 

OP = o° + ap, (9) 

the parameter /x can then be calculated through 

Vi 
3 + a 

(10) 

Note that the relations (8) and (10) give the same upper bound 

of ji, equal to The experimental curves in Carapellucci 
and Yee (1986) show that the factor /J. for glassy bisphenol 
A—polycarbonate is about 0.14. For Zr02-containing ce
ramics, Chen and Reyes Morel (1986) reported that the con
stant a in (10) may approach 2.0, which corresponds to JX = 
0.69. According to these studies, pressure-sensitive yielding 
seems to play an important role in the plastic deformation and 
fracture of polymers and in the transformation plasticity and 
fracture of toughened ceramics. 

In general, pressure-sensitive yielding arises in part from 
basic flow mechanism in some steels and polymers, phase trans
formation in some ceramics, and in part from void nucleation 
and growth in steels as well as craze formation in polymers. 
The initial and current yielding for these materials may deviate 
somewhat from the yield criterion (1) (see Drucker (1973) for 
more discussion). However, in this study we assume that the 
yield criterion (1) with a constant p, is approximately valid for 
the range of the stress state of interest near a crack tip for 
simplicity in order to explore the major effects of pressure 
sensitivity on the crack-tip field. 

In this analysis, we assume that material hardening is spec
ified by the Ramberg-Osgood stress-strain relation in shear: 

y T 

— = — + a 
To T0 

ar- (i i) 

where r is the shear stress, y is the shear strain, n is the strain 
hardening exponent, a is a material constant, and T0 and 70 
are the reference shear stress and the reference shear strain. 
Within the context of deformation theory of plasticity, we 
generalize the relation between the shear stress and the plastic 
shear strain (the second term on the right-hand side of (11)) 
to multiaxial states by using (5) and (7). In this generalization 
the yield surface is assumed to expand isotropically and the 
plastic strain is assumed to obey the plastic normality rule. 
The resulting relation between the stresses and plastic strains 

To :=«0?)"(t^)- (12) 

The total plastic strain e§ in (12) can be decomposed into a 
deviatoric part and a volumetric part: 

1 " " (13) + l 4 Syi 

where 

and 

Yo \T0 / 2re 7o 

To - ' • & ) " • 

(14) 

(15) 

The summation of (14) over / andy gives an expression relating 
the effective plastic shear strain yf (= (2e(f e,f)U2) and the 
generalized effective shear stress T„ : 

25 = „fcV. 
To \To/ 

(16) 

By comparing (16) with (15), we find that 

& = ** TS • (17) 
Equation (17) indicates that the pressure sensitivity factor JX 
also serves as the plastic dilatancy factor which gives the ratio 
of plastic volumetric strain ^kk to the effective plastic shear 
strain 7^. This results from the plastic normality flow rule that 
we use to arrive at equation (12). 

The stress-strain relation (12) is based on the deformation 
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theory of plasticity. Incremental constitutive equations ac
counting for pressure sensitivity and plastic dilatancy can be 
found, for example, in Rudnicki and Rice (1975) and Needle-
man and Rice (1978). These authors introduced two parameters 
to allow non- normality flow; one parameter is the pressure-
sensitivity factor ix, and the other is the plastic dilatancy factor 
/3. Plastic normality applies only when p. = 0. In this paper 
we investigate the asymptotic crack-tip stress and strain fields 
for the pressure-sensitive dilatant materials to which plastic 
normality applies. 

When the elastic strains are assumed to be negligible com
pared to the plastic strains, the plane-strain condition requires 
that, from (12), 

S33 , t 
2T„ 3 

0. (18) 

By solving (18) for o}3, the hydrostatic stress, am, and the 
deviatoric stress components, sn and s22> c a n be expressed in 
terms of the three in-plane components, cu, o22, and an. Sub
stituting the results into (12) yields the following stress-strain 
relation under plane-strain conditions, 

fu 1 / i V 

To 2 \r0/ 

To 2 \T0/ 

to 2 \T0J re 

an-a22 

l 2re 

o22-ou 

L 2r , 

+ 

+ 

/* 

/* (19) 

e 

To 

where 

and 
Vi 

VI 

1 - 3 M ' 

/ g i i - g ^ V 

/on-o22Y' 
+ °h (20) 

+ of: + 2 (ffn + o22). (21) 

It is more convenient to use the effective stress oe and the 
generalized effective stress age, (rather than re and rge) for the 
analysis of a crack under mode I loading. With the connections 

CT0 = VI T0 and e0 = 7o/VI> an alternative expression of (19) 
in terms of <r0, e0, ae, and age can be easily obtained. 

3 Dominant Singularity Analysis 
We consider a planar crack problem, where the Cartesian 

coordinates (xx, x2) and the associated polar coordinates (r, 6) 
are centered at the crack tip and the x3-axis lies perpendicular 
to the Xi -x2 plane. The argument leading to the HRR singular 
fields has been detailed in Hutchinson (1968a, b) and Rice and 
Rosengren (1968). In the same fashion, by applying the path-
independent /-integral introduced by Rice (1968), the dominant 
asymptotic crack-tip stress, strain, and displacement fields for 
pressure-sensitive dilatant materials can be written as 

Cij = °b 

e,v = ae0 

aoaeol(n,ix)r_ 

J 

Uj = «£</• 

aa0eoI(n,ij.)r 

J 

ao0eol(n,ij.)r„ 

n+i 5jj(9;n,[i) 

n 
^+T €ij{d;n,fi) 

n 
^77 u,{d;n,ix) 

(22) 

J - t n+\ ageeevx 

dUi 

Wdx, 
ds. (23) 

In (23), ee = ye/\fi is the effective strain, and Vj is the y'th 
component of the outward unit normal to an arbitrary path 
T from the lower crack surface to the upper crack surface in 
the counterclockwise sense. The dimensionless function / and 
the dimensionless angular functions dy, ey, and «, depend on 
the strain-hardening exponent n, the pressure-sensitivity factor 
ix, and the conditions of plane strain or plane stress. These 
angular functions are normalized by setting the maximum value 
of the generalized effective stress age equal to unity. dge is related 
to <jy through the following relations: 

ff„ = Op + V 3 ixa,„, 

3 
-^{orr-aee)

2 + 'ia2
re 

1/2 

(24) 

(25) 

•(5>i »)-
VI 

pae. (26) 

With the normalization in (22), /represents the amplitude of 
the singular fields; it cannot be determined by the asymptotic 
crack-tip analyses since it depends on the geometry of the 
cracked body and on the external loading. The dimensionless 
constant lis expressed as: 

-n. « + i 
an+l cos 0 - [sind(arr(Ue-U)) 

-OrfiUr+Ue)) + 
COS0 

M + l 
(orrUr + ffrfMfl)] dd (27) 

where 

where ( ) denotes differentiation with respect to 8. Note that 
the separable form crack-tip fields (22) are of the HRR type, 
and when fx = 0 they reduce exactly to the HRR fields. 

We follow the solution procedures used by Hutchinson 
(1968a, b), Rice and Rosengren (1968), and Shih (1973, 1974) 
to obtain the crack-tip fields for pressure-sensitive dilatant 
materials. We outline these procedures in the following. An 
Airy stress function of separable form in r and 6 is introduced 
to satisfy the equilibrium equations. The strain components 
are expressed in terms of the stress function through the plastic 
stress-strain relation, and then are inserted into the compati
bility equation to arrive at a fourth-order nonlinear ordinary 
differential equation with 6 as the independent variable. The 
traction-free conditions on the crack faces and/or the sym
metry (mode I) or antisymmetry (mode II) conditions about 
the crack line provide the necessary boundary conditions for 
the differential equation. A shooting method based on a com
bined fourth-fifth order Runge-Kutta scheme with error and 
step-size control is employed to generate solutions. 

4 Mode I Crack-Tip Fields 

We restrict our attention to the mode I crack-tip fields. The 
angular functions of the fields, dy(d;n,ix), eu(9;n,n), and 
Uj{d;n,ix), can be obtained for small /x's. As (x increases for 
each n, the stress state ahead of the crack approaches the pure 
hydrostatic stress state and ae approaches 0 at 6 = 0. This 
trend for each n will be detailed later in this section. When 
the elastic strains are neglected, the plane-strain condition at 
6 = 0. for dilatant materials can not be satisfied under pure 
hydrostatic stress state unless the materials are incompressible. 
Furthermore, our constitutive law (12) has a singular behavior 
and can not describe accurately the constitutive behavior at ae 

= 0 where a pure hydrostatic stress should induce only a pure 
dilatational plastic strain. We therefore define a /tlira at which 
the numerical result of ae at 6 = 0 approaches 0. For each n, 
when ix > /xlim, we can not find any solutions based on the 
present HRR-type formulation. In Table 1 we list the values 
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\i = 0.00 

ji = 0.03 

li = 0.06 

ft = 0.09 

/ i=0 .10 

li = 0.20 

;i = 0.30 

li = 0.45 

/i = 0.60 

Wim 

Table 1 

n = 2 

5.939 

5.880 

0.031 

The numerical values of /(n>) and ftllm(n) 

n = 3 n = 5 n = 10 n = 20 

5.507 5.024 4.540 4.214 

5.429 

5.360 

5.307 

4.740 4.233 3.894 

4.544 3.966 3.609 

3.750 3.360 

3.078 

0.098 0.204 0.344 0.461 

n = 100 

3.835 

3.481 

3.163 

2.876 

2.494 

2.164 

0.639 

of pun, and I(n,n) for several n's. It can be seen from this table 
that the numerical constant / decreases as n or n increases, 
and that a large n (representing low-hardening materials) cor
responds to a large /ilim. 

The ^-variations of the stresses, a,-,- and age, and the strains, 
?,y and ekk are presented in Fig. 1 for n = 3 and (x = 0, 0.06, 
and 0.09 and in Fig. 2 for « = 10 and n = 0, 0.2, and 0.3. 

The solutions for n = 3 and « = 10 represent the crack-tip 
fields for typical high-hardening and low-hardening materials, 
respectively. For the convenience of comparison with perfectly-
plastic solutions which will be detailed in Section 5, the ex
tremely low-hardening solutions for n = 100 and n = 0, 0.4, 
and 0.6 are also presented in Fig. 3. In each of Figs. 1, 2, and 
3, a comparison of the crack-tip stress and strain solutions for 
H = 0, the second JX, and the third /x (close to jtlim), shows the 
evident effects of \x on the crack-tip fields. It should be men
tioned that when /x = 0, our solutions for all the n's match 
exactly the tabulated values of the HRR solutions given by 
Shih (1983). 

A comparison of the stress plots in Fig. 1 for n = 3, in Fig. 
2 for n = 10, and in Fig. 3 for n = 100 shows that for a fixed 
n, a large y. results in a small am, a small a„, and a small am 
- arr at 6 = 0. The generalized effective stress age (reducing 
to ae when n = 0) is found to peak somewhere between 90 
deg and 100 deg for all the cases. The shear stress, 6>e, peaks 
at about 90 deg for ix = 0. It peaks at an angle larger than 90 
deg for a large ix, (see Fig. 2 for n = 10 and Fig. 3 for n = 
100). This tendency for the shear stress to peak at an angle 
larger than 90 deg when JX > 0 is not evident for n = 3 because 
of the small values of fx considered. 

Figures 2(d), 2(e), and 2(f) for n = 10 and Figs. 3(d), 3(e), 
and 3(f) for n = 100 indicate that the peak value of the strain 
egg increases as /x increases. In contrast, err weakly depends on 
ix. As shown in Figs. 1(d), 1(e), and 1(f) for n = 3, the angular 
functions of the strains t„, he, and ?rf are not affected much 
by the small'values of ix considered. However, for n = 3 and 
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Fig. 2 The 0-variations of the normalized stresses and strains for 
n = 10 

ji = 0.09, the maximum value of the volumetric strain ekk 
reaches about 20 percent of the maximum value of the shear 
strain e^. In all the cases we have studied, the volumetric strain 
ekk increases as fi increases and the maximum value of ekk is 
attained at about 0 = 90 deg. 

At this moment, it is worth mentioning Hutchinson's work 
(1983) on the crack-tip fields for material undergoing creep-
constrained grain boundary cavitation. The common feature 
of his material model and our constitutive equation is that the 
deformation has a dilatational component. In his constitutive 
model, the dilatational component of the macroscopic creep 
strain rate arises from a given density of cavitating grain 
boundary facets, whereas in our constitutive equation, the 
dilatational deformation comes from pressure-sensitive yield
ing and the normality flow rule. We observed from his results 
that as the density of cavitating grain boundary facets in
creases, the difference between the hoop stress and the radial 
stress at 6 = 0 deg decreases, and the volumetric strain rate 
increases with a maximum at about $ = 90 deg. These obser
vations are similar to the effects of pressure sensitivity on the 
crack-tip fields presented above for the pressure-sensitive di-
latant materials. 

The contours of the generalized effective stress are plotted 
in Fig. 4(a) for n = 3 and fi = 0, 0.06, and 0.09, in Fig. 4(6) 
for 77 = 10 and fi = 0, 0.2, and 0.3, and in Fig. 4(c) for n = 
100 and /t = 0, 0.4, and 0.6. These contours are plotted in 
the normalized coordinates Xi/[7/(aCT0e0((Tgc/(70)"

+1)] and x2/ 
[J/(ao0e0(oge/o0)"

+l)]. These figures demonstrate that for a 
fixed n, the contour expands and moves in the positive xr 

direction as \x increases. Note that the contours in these figures 
should not be confused with the shape of the plastic zone. 

The hydrostatic stress contours for n = 3 and \i = 0, 0.06, 
and 0.09 are shown in Fig. 5, whereas the contours for n = 
10 and fi = 0, 0.2, and 0.3, due to their large size difference, 
are shown in Figs. 6(a), 6(b), and 6(c). These contours are 
plotted in the normalized coordinates xl/[J/(ao0e0(<jm/<j0)"

+l)] 
and x2/[J/(ao0e0(am/a0)"

+')]. A comparison of the contours in 
Figs. 5 and 6 shows that for a given n, the contour for a larger 
fi is smaller in size, flatter in shape, and more extrusive to the 
positive ^redirection when compared to those for a small fi. 
The contour for a large fi is fully enclosed by the one with a 
small fi. This indicates that the pressure sensitivity reduces the 
hydrostatic stress in all directions. The observed change in 
contour shape with fi signifies that the location of the maximum 
hydrostatic stress moves to 6 = 0 deg (directly ahead of the 
crack) as fi increases. It is worth mentioning that although the 
maximum hydrostatic stress of the HRR fields (fi = 0) is not 
located at 9 = 0 deg, the values of am at 6 = 0 deg for different 
n's are only about 1-2 percent smaller than their maximums. 

5 Perfect-Plasticity Crack-Tip Fields 
Here, we construct perfectly-plastic crack-tip fields using 

slip line theory with the assumption that the material sur
rounding the crack tip is fully yielded at all angles. The crack-
tip fields correspond to the low-hardening limit of the asymp
totic crack-tip fields for power-law materials. It is well known 
that the low-hardening limit of the power-law solutions cor-
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•variations of the normalized stresses and strains for 

responds to solutions for rigid perfectly-plastic materials. 
However, the material surrounding the crack tip may not al
ways be fully yielded at all angles for elastic perfectly-plastic 
materials (for example, see Gao (1980), Nemat-Nasser and 
Obata (1984), and Dong and Pan (1989a, b) for Mises mate
rials). 

The crack-tip fields for perfectly-plastic pressure-sensitive 
materials can be obtained by solving the two equilibrium equa
tions together with the yield condition for the three unknown 
stress components, oTT, aee, and a^. The yield condition in the 
polar coordinates is 

1 
1 

• / * ' 
•[(*=»)• 

+ V--
ff„ + ( 

+ rt) 

Vi 
We introduce two parameters, 4> and c, defined as 

s i n <j> = 

and 

c = 

I - 3 , 2 

°o 

Vi ^ 
1/2 

(28) 

(29) 

(30) 

and rewrite the yield condition (28) as 

(t&y + °h 
1/2 

+ s i n 4> • 
Orr+L 

= c cos 4>. (31) 

The yield condition in the above form allows us to use the slip 
line theory in soil mechanics and concrete mechanics, where 
(31) is termed the Coulomb yield criterion and the parameters 
c and <f> are frequently called the cohesion and the angle of 
internal friction, respectively. The details of the slip line theory, 
based on the Coulomb criterion, can be found in many soil 
mechanics and concrete mechanics textbooks (see, for example, 
Wu (1966) and Nielsen (1984)). 

With the help of the Mohr diagram, it can be easily shown 
that when a material element yields, there are two planes (par
allel to the x3-axis) on which the normal stress a and the shear 
stress T satisfy the equation 

T = c — o tan <j> (32) 

Equation (32), as an alternative expression of (31), is the orig
inal form of the Coulomb criterion. The traces of the planes 
for which (32) holds form two families of slip lines in the xx-
x2 plane, a lines and /3 lines, with one family intersected with 
the other by an acute angle of ir/2 - <f> (see Fig. 7). As shown 
in the figure, the a and /3 lines incline at an angle of TT/4 + 
<f>/2 from the major principal axis. Integration of the equilib
rium equations along the slip lines shows that (see, for example, 
Wu (1966)) 

1̂  = constant (along a lines) (33) 

and 
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X + ^ = constant (along /3 lines), 
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2 tan . 
and \p is the angle between the major principal axis and the 
.s^-axis. 

Figure 8 shows the slip line fields for /J. = 0, 0.4, and 0.8, 

P 

X 

7 + 1 *' 

\ 4 T 2 

KS 
Fig. 7 Slip lines a and 0 and the major and minor principal stresses a, 
and a,, in the x1-x2 plane 

which correspond to <£ = 0 deg, 24.3 deg, and 64.4 deg, 
respectively. These slip line fields are similar to those in the 
limit analysis of the Prandtl punch problem in soil mechanics 
and rock mechanics. As shown in the figure, these crack-tip 
characteristics fields consist of two constant stress zones (re
gions I and III) and a centered fan zone (region II). The trac
tion-free boundary conditions require that the material element 
in region III yield in uniaxial tension or compression. We 
choose the uniaxial tension which gives tensile stresses ahead 
of the crack tip. This results in the characteristic lines with an 
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inclination angle of TT/4 + 0/2 from the Jtyaxis. The constant 
stress state in region III is 

2c cos 0 
an = 1 + sin </> 

aii = °n = 0. (35) 

As shown in Fig. 8, one family of the characteristic lines 
(the /3 lines) leaves the traction-free crack face of region III; 
then it swings an angle of ir/2 through region II; finally it 
arrives at the crack line of region I. The slip lines in region I 
incline at an angle of ir/4 - 0/2 from the x raxis. The constant 
stress state in region I can be determined by (34) as: 

0n 
tan 0 

°22 

[ 1 - e -

1 
1 - sin0 

£ —Trtan0 0,2 = 0. (36) 
tan0 L 1 +sin0 

The stresses in region II varies with the polar angle 6. They 
can be also determined by (34) and the stress state in the 
neighboring constant stress zone. Listed next are the complete 
crack-tip stress fields expressed in the polar coordinates. 

I n r e g i o n l ( o < 0 < ^ - ^ V 
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The closed-form slip line solution (37)-(39) is valid for 0 < 

ir/2, which is equivalent to /i < V 3 / 2 (see (29)). From Table 
1, the values of mim for n = 2, 3, 5, 10, 20, and 100 are 0.031, 
0.098, 0.204, 0.344, 0.461, and 0.639, respectively. It seems 

that ,itiim for finite n tends to the number V 3 / 2 = 0.866, which 
is the limit for n = oo. Note that the fields for p = 0 (hence 

0 = 0 and c = aa/\[i) reduce exactly to the plane-strain slip 
line fields based on the Mises yield criterion (see Rice (1968)). 

It can be seen from Fig. 8 that the constant stress region I 
located in front of the crack forms an angle of 7r/4 - 0/2 from 
the horizontal, while the region III adjacent to the crack face 
forms an angle of ir/4 + 0/2. Since 0 increases as n increases, 
the slip line patterns become very sharp for a large /x. We 

M = o.o 

M = 0.4 

M = 0.8 

Fig. 8 Plane-strain slip line fields near the tip of a crack under mode 
I conditions 

emphasize that the boundaries of the slip line fields in Fig. 8 
are not intended to represent the boundaries of the plastic 
zone. 

The angular distributions of the normalized stresses b ,y( = a,/ 
<70) and <rge( = age/o^ for ji = 0, 0.4, and 0.8, calculated from 
(37)-(39), are plotted in Figs. 9(a), 9(b), and 9(c), respectively. 
The generalized effective stress age which equals 1 for all 0's 
is also plotted in these figures. The crack-tip stress distributions 
for JX = 0 (Fig. 9(a)) are the same as those in Rice (1968). It 
can be seen from Figs. 9(a), 9(b), and 9(c) that the effects of 
the pressure sensitivity on the crack-tip stress fields observed 
from our hardening solutions are also true for perfectly-plastic 
materials: As /n increases, oee, arr, and am - arr at 8 = 0 deg 
decreases and these result in a small effective stress, ae, and a 
small hydrostatic stress, am, at 6 = 0 deg. As shown in Fig. 

9(c), for ii = 0.8 (which closes to jtlim = V3/2) , om almost 
equals arr at 6 = 0 deg. A comparison of Fig. 3(b) for n = 
100 and ix = 0.4 with Fig. 9(b) for n = oo and ix = 0.4 indicates 
that the stress distributions of the low-hardening solution agree 
remarkably well with those of the perfectly-plastic solution. 
In addition to the results shown here, for other JX'S, we have 
observed a remarkably good agreement of the n = 100 stress 
solutions with the perfectly-plastic solutions. This suggests that 
the perfectly-plastic solutions presented here are indeed the 
low-hardening limit of the power-law solutions. 

6 Concluding Remarks 
In this study we have investigated plane-strain mode I crack-

tip fields for both power-law hardening and perfectly-plastic, 
pressure-sensitive dilatant materials. Within a limited degree 
of pressure sensitivity (p. < mim), we found that the asymptotic 
crack-tip fields of separable form in r and 6 indeed exist. These 
solutions of the crack-tip fields for fx = 0 match exactly those 
of the HRR fields. Furthermore, the angular stress functions 
of the crack-tip fields for low-hardening materials agree well 
with those of the corresponding perfect-plasticity solutions. 
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Fig. 9 The 0-variations of the normalized stresses a,y(= ff,;/<r0) and ag, 
(= ogsla0) for perfectly-plastic pressure-sensitive materials 

It is clear from our hardening solution (22) that / can be 
regarded as a measure of the amplitudes of the singular crack-
tip fields for pressure-sensitive dilatant materials. If the finite 
deformation zone and the fracture process zone are well con
tained within the zone of dominance of the singular field, J 
can be used as a characterizing parameter to correlate the crack 
initiation and a limited amount of crack growth in these ma
terials. Under small-scale yielding conditions, /can be related 
to the elastic intensity factor K of the cracked solid. In general, 
J can be inferred from the geometry and remote loading of 
the cracked solid by either experiments or computational 
methods. 

The hydrostatic stress ahead of the crack tip seems to play 
an important role in the initiation of ductile tearing processes. 
We consider the hydrostatic stress at a small fixed radial dis
tance r ahead of the crack tip (at 6 = 0 deg) within the zone 
dominated by the HRR type fields described by (22) at the 
same value of / . For a given set of a, a0, and e0, we show in 
Fig. 10 the /i-dependence of the hydrostatic stress am and the 
effective stress ae ahead of the crack tip (at 0 = 0 deg) for n 
= 3 and 10. In this figure, we also show the corresponding 
results for n = oo. Here, am and ae are normalized by 
o0[J/(ao0e0r)]l/<-"+1) for hardening materials and by aQ for 
perfectly-plastic materials. The curves for n = 3 and 10 repre
sent [!//(«, M)] l/(n+l) 

am (0;«,/z) and [l/I(n,/x)] l / ( n + l ) 

ae(0;n,ix), whereas the curves for n = oo are obtained from 
(37) for perfectly-plastic materials. As clearly shown in Fig. 
10, both the hydrostatic stress and the effective stress at 6 = 

•a 

a 

0 . 0 

Hydrostatic Stress 

Effective Stress 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Pressure Sensitivity factor, p 

Fig. 10 The hydrostatic stress am (solid line) and the effective stress 
a, (chain-dotted line) ahead of the crack tip versus the pressure sensi
tivity factor /»for n = 3, 10, and n = <x 

0 deg decrease as /* increases, and the effective stress at 8 = 
0 deg approaches 0 as /x—rtim- Under the conditions previously 
discussed, we also found that for hardening materials the vol
umetric strain at a given small distance, r, ahead of the crack 
tip increases from 0 as n increases from 0. Note that in this 
study, the pressure sensitivity factor JX also serves as the plastic 
dilatancy factor which represents the ratio of the volumetric 
plastic strain to the effective shear strain. Therefore, a large 
pressure sensitivity accompanied by a large plastic dilatancy 
relaxes the near-tip hydrostatic and effective stresses. This 
lowering of the hydrostatic and effective stresses may be used 
to explain the material toughening observed in some ceramic 
and polymeric composite materials. 

Our plane-strain crack-tip field solutions for both hardening 
and nonhardening materials show that when ^—/ilim, ae at 6 
= 0 approaches 0. Our constitutive law (12) can not handle 
the stress-strain relation at ae = 0. More importantly, in our 
formulation of the HRR-type crack-tip fields, the plane-strain 
condition (18) requires oe ^ 0 for dilatant materials. This 
explains the existence of ^lim. To explore the near-tip field 
structure for jt > filim, we have started a full-field elastic-plastic 
analysis using finite element methods. The results will be re
ported in the subsequent papers. 
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H. S. Fluss has graciously called the author's attention to 
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of these is Prescott's analysis of the constant-thickness, circular 
piston ring (Prescott, 1924). Although Prescott considered the 
case of a complete, but open, ring, most of the results of the 
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the constant pressure, the contact zone, and the concentrated 
forces. Fluss himself has extended Prescott's work to the case 
of an incomplete ring (Fluss 1986). The present Note differs 
from those earlier works in style, retention of extensibility in 
the governing equations, and inclusion of the case for which 
there is only three-point contact. 
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A Moving Boundary Problem in a 
Finite Domain 
The heat conduction and the moving solid-liquid interface in a finite region is 
studied numerically. A Fourier series expansion is used in both phases for spatial 
temperature distribution, and the differential equations are converted to an infinite 
number of ordinary differential equations in time. These equations are solved 
iteratively for the interface location as well as for the temperature distribution. The 
results are compared with existing solutions for low Stefan numbers. New results are 
presented for higher Stefan numbers for which solutions are unavailable. 

1 Introduction 
Moving boundary problems in melting and solidification 

have been studied for over a century and various methods 
have been used in solving these problems. Due to the presence 
of a moving interface, the boundary conditions are rendered 
nonlinear. Because of this, exact solutions to these type of 
problems are very limited and are restricted to semi-infinite 
mediums (Carslaw and Jaeger, 1954). Exact solutions in forms 
of infinite series for arbitrary initial and boundary conditions 
have been found by Tao (1978, 1980, 1981). Various approx
imate analytical and numerical methods have been used to 
solve this group of problems. A discussion of these methods 
has been published in survey articles and books (Fukusako 
and Seki, 1987; Ockendon and Hogkins, 1975; Rubinstein, 
1971; Wilson et al., 1978). The heat balance integral method 
was introduced by Goodman (1958), and was used by many in
vestigators in semi-infinite domains, initially at the melting 
temperature, with steady boundary conditions. The method 
becomes complicated if the initial temperature in the original 
phase is different from the melting temperature. Yuen (1981) 
extended the heat balance integral method to account for in
itial subcooling in a freezing problem in a semi-infinite 
medium. Numerical methods using finite difference and finite 
element formulations were also used for solving moving boun
dary problems. As the location of the interface is not known a 
priori, and is a part of the solution, the numerical formula
tions are rendered complex near the interface. Another 
method is the enthalpy formulation, where a single energy 
equation is written, which covers both domains, and 
eliminates the moving interface. The resulting equation can be 
solved using finite difference techniques. Dursunkaya and 
Nair (1988) used an infinite orthogonal series formulation to 
solve for the semi-infinite domain problem, which can be ex
tended to include the finite domain with arbitrary initial and 
boundary conditions. 
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In a finite medium, if the medium is initially at the melting 
temperature, the solution to the problem reduces to that of the 
infinite domain, which can be solved using the available exact 
solutions or using the heat balance integral method. When the 
initial temperature is different than the melting temperature, 
no exact solution to the problem is presently available. Wein-
baum and Jiji (1977) applied the singular perturbation theory 
for the problem in a finite slab, where the medium initially is 
not at the melting temperature. The location of the interface 
was found, the results, however, are valid for small Stefan 
numbers. Charach and Zoglin (1985) used the heat balance in
tegral method and time-dependent perturbation theory to 
solve the same problem. They found the interface location and 
temperature distributions for small liquid and solid Stefan 
numbers. 

In this study, infinite orthogonal series are used to represent 
the temperature distributions in both phases, which satisfy all 
the boundary conditions. When the series are substituted in 
the energy equations, the resulting nonlinear ordinary dif
ferential equations can be solved iteratively for the time-
dependent behavior. When the solution is substituted in the in
terface heat flux equation, a nonlinear ordinary differential 
equation is obtained for the location of the interface. This 
equation can be solved to give the interface location without 
solving for the temperature distribution. Once the interface 
location is known, the temperature distribution can be com
puted using the series summations. 

The method of solution presented here has the capability to 
include variable initial temperature distribution as well as 
time-dependent boundary conditions. Although an extension 
of the method to higher dimensions is not obvious at this time, 
two-dimensional problems with cylindrical symmetry and 
three-dimensional problems with spherical symmetry are 
amenable to the type of series expansion introduced here. 

2 Formulation 

The governing differential equations for the temperature in 
the two phases are given by, 

32T, dT, 
a!i?- = i r ' 0 o c < * (1) 
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d2T2 dT2
 T anc^ £> respectively. Multiplying equation (14) by 4>ln and 

a2 a 2
 = ~ ^ ~ ' •s,<-*'<'> (2) (15) by 02„,and integrating (i.e., Galerkin approach), we get, 

m2Tr2 2<r (—11" 
where the subscripts 1 and 2 represent the solid and liquid (jln-\ pln - — 
phases, respectively, and a is the thermal diffusivity. The a ira n 
spatial and temporal domains are 0<x<l and 0< t< °°. The 
initial and boundary conditions are, 

r ,«M) = U, T2(pc,0)=V, ^ (l,t) = 0, 5(0) = 0, (3) 
ox 

and the interface conditions are, 

Tl(.s,t) = T2(s,t) = Tm, (4) 

+ ̂ T E f f l L C - 4 " = U (16) 
Q m = \ 

An2ir2 

( 1 - f f ) 
T~ M2« 

, ar, ar2 & + - r - — ^ L ^2mFmn=o, « = i , 2 , . . . , (17) 
K, — £2 —— =pL——. (5) U - e ; m = i 9x dx dt 

where 

Fmn = \\t- Dsin(«TT 4 ~ ) c o s ( * * ~ H T ) ^ • (19) 

Here, 5 (0 is the interface location, K>r„ , and U<Tm are 
given initial and boundary temperatures, respectively, with Tm -\" t ( mw^\ • { nw%\.>. n 8- , 
representing the melting temperature. The constants k, p, L °mn ~ J0

 5 C 0 S V - ~ / S m W/ ? ' * ' 
represent thermal conductivity, density, and the latent heat of 
fusion, respectively. Introducing the dimensionless temper
ature 8 and the other dimensionless quantities, 

a = s/l, £=x/7, r = a1t/P, A=a2/al 

T — U x T — T V T 
6> = T -II ' 6l= r -in ' V*s - n ' T h e e c l u a t i o n s (16) a n d (17> c a n b e represented in the follow-

m s *m u T»i U ing integral forms, 
(6) 2 ( - l ) m H a 

the governing differential equations, initial, boundary, and in- "\m= — Jo ~ " +Sm(D) 
terface conditions become, 

i!!i_i!L_ « d° lTi xexp(-[7^- + - ^ W W , (20) 
d? ~ dr o2 dr ' ( 7 ) V J f V 2 a a J ' 

, d 82 dd2 « . - •> o 
A — 4 - = — L , (8) 2 r fT / 6 Am2TT2 \ , 

K2 dr W (32m= — exp - _ ( - + — - y - W 

«i ( 0 ,0=0 , - T 7 - ( 1 , T ) = 0 , 02(|,O)=K*, ff(0) = 0, (9) 

e1(ff,T)=e2(ff,T)=o, (io) 
/ lw2 i r2 \ "1 •) 

ft ^ | *• k
 d02 .... P ^ , ^ + (1-a)* j ^ J ^ ] ' P 1 ) 

1 a? a 2 a? ~ c r m - t / ) </T " where> 

A solution of the above system of equations is sought in the A ( -1)"« ,„„, 
form, g m ( r ) = f f l 2 7 r ^ M 2 _ „2 fli,,, (22) 

00 

01= D0 l m(T)4> l m(£,(l(T)), 
m = l 

Oo 

S2=y*E^m(TH2m(^0(T)), (12) 

n=l rn' — n'-

Oo 

/m (T) = m2* X; " fe,. (23) 
» = i m - » 

Each of the systems of equations (20) and (21) represents a se-
, . , - , . , , quence of coupled integral equations. As the spatial distribu-

where 0 l m and $2 are unknown functions and </>lm and 0 ^ d f t e m t u r e i s s m o o t h > i t c a n b e e x p e c t e d t h a t t h e 

form sequences of linearly independent functions satisfying c o ^ w £ a k n a t u r e a n d ^ Qf t h e s e 

the boundary conditions. For simplicity we choose, t i ( ^ ^ b g o b t a i n e d i n a n k e r a t i v e w a y J n e q u a t i o n s ( 2 0 ) a n d 

. / k\ , • (- t - ° \ - . ,~ (21), if we neglect gm(r) and fm(r), we obtain the first ap-
* l m = s in(m i r v j , ct>2m=sm{m^-[-7), m = m~U2. p r o ; i m a t i o n s ; 

... 2 ( - l ) m r T a [ f ' / f f w 2 l r 2 \ , w l J b (13) „<„__^Z!> 
Substituting these in differential equations (7) and (8) we get, 

Li Plm<t>"m= Ll ^ImPlm T ° + Lt Plm^>\m> (i4) 

(24) 

Am2ir2 

M= - ±- exp[- jT (-±- + -^r)4 (25) 
miT I Jo \2(a— 1) ( l - o V / -1 

^ Li <32m<t>2m= Lj $2m$im+ Li $2m<t>2m> (15) Using these in (22) and (23) we obtain improved values for 
m = 1 m = 1 m = 1 g m ( r ) a n d / m ( T ) , which in conjunction with (20) and (21) give 

where dots and primes indicate differentiation with respect to the second approximations, 
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lm rrnr Jo a F \ Jf V2CT a1 / / V<X(T + A T ) J ' VCT V Jf ff2 / 

T + A T >v,2_2 

('-5a:i-a; (m2-n2)ir2 

nytm 

* - ) + Ar m 2 _ 2 
7 » - T O ^ T L

 expH f — * ' ) * 

(36) 

(37) 

f(«22-«2))]tff, . 

'= i r e x p(- Jo ( 2 ^ 1 7 +
 ITSF>) f1 

(26) An asymptotic expansion of (37) gives 

O(T + AT) ( 
7 " ~ w 2 T 2 g ( r + A r ) [ b 2 ( r + A r ) - a 2 ( r ) e x p ( - ^ ^ / 0 ( r ) ) ] 

+ 2m Y— 
JO ( 1 - f f 

r(r + Ar) 

2 
[(T(/T + C?T)O-3(T + AT) 

(1-ff) 

5 (exp(L f y4(/w2-n2)7r2 

(1- f f ) 2 dt')l(m2-n2))dt). (27) 

-ff(r)ff3(T)exp(-w2ir2/0(T))] . (38) 

Similarly, 

Further iterations can be carried out if adequate accuracy is 
not obtained with the second approximation. The examples 
considered at the end of this paper indicate that the second-
order approximations are sufficiently accurate for all cases 
considered. The interface condition (11) can be expressed in 
terms of the integrals, 

f r + Ar (J)-

I0(r) = \T - X . (28) 

7 l (^) = j;exp(-j;(A + ̂ ) .r ) - f^ (29) 

h{m,T)= J—l_exp( - - ^ - r f f ' ) — (l+g(f))rff 
Jo v ff(r) \ Jf cr / ff 

(39) 

72(/W,T + AT) = 
ff(T) 

ff(r + Ar) 

r+Ar m 2 _ 2 / j-T + AT mlwl X 
C e X P V~Jr —j-dZ)h(m,T)+I2: (40) 

where /?? is 

1 
-*22 — " /— • — 

Va(T + Ar) 

™=A*iih d - a ) 2 

(30) 

(31) 

fT+Ar ft / p i + Ar J J J ^ Z s 

L Wexp(-Sr — tf')(l + *<r»* WD 
ff(r + Ar) 

/ 4 ( T ) = E w 2 exp( -m 2 / 3 (T) ) 1 exp(w2/, 
Jo 

<J(T + AT) 

T + A T 

(f)) 
(1 - f f ) 

exp(- / j 2 / 3 ( f ) ) 
# • (32) 

as, 

ff = -^-[ l + 2 £ / , (m,T) +/2(m,T)] 

{ T+AT / p T + AT yyi 'K \ 

r e X P ( - ) f - ? " * ' ) * • 

An asymptotic expansion gives 

/22~ I ^ V A I ( l+g ( r ) ) f [ ^ (T+AT) 
OT21T2ff(T + AT) (. 

- f f 2 ( r )exp( -w 2 7r 2 / 0 ( r ) ) ] 

2 
5—5- [ff(T-r-rfT)ff3(T + AT) 

(42) 

m=l 

~ n J .3/2 l 2 I J exp((- /77 2 / 3(r))+4/ 4(T)] , 
U ff; ^ m=\ J 

(33) 

where Sl=(Tm-U)Cx/L and S2 = (V- Tm)C2/L are the solid 
and liquid Stefan numbers, respectively, and C,- is the specific 
heat. The nonlinear ordinary differential equation (33) for the 
interface location, a(T), has to be integrated numerically. The 
integrals I0, 7,, 72, and 73 can be written in the next time-step, 
T + AT, as a function of the previous time-step, T, giving, 

- f f (T)ff 3 ( r )exp(-W
27r 2 / 0 ( r ) ) ] ] . 

The integral 73 at the next time-step is 
. r + Ar d{ 

( 1 - a ) 2 

/3(T + Ar)=/ 3 (7- )+/ 3 3 , 

(43) 

hence, 

where 733 is 

73(T + AT) =ATT2 V " J df, (44) 
JO (l-ff)z 

(45) 

f ff(f) / f r w2 i r2 \ ff 
/ , ( B I , T ) = J — r f e x p l - — j - r f f ) df , (34) 

JO M <J(T) \ J f ff2 / ff ( T^ 

r 
rfr 

•df. (46) 

^(m.T+Ar) 

= ^ ^ e * p ( T A ^ * > > ( ^ ) + / - (35) 
N (T(T + A T ) \ JT ff2 / 

7(T + AT) 

where 7n is given by, 

( 1 - a ) 2 

The integral 74 at the next time-step is a function of 73, as 
given by equation (32), and the interface equation is solved as 
follows: 

(1) The solution is started using the similarity solution for 
the semi-infinite case, <T(T) =AVT, where X is known (Carslaw 
and Jaeger, 1954). 
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Fig. 1 Dependence of interface location of time 

(2) I0, / , , I2, 73, and I4 are calculated using a predictor 
algorithm (Adams-Moulton predictor). 

(3) The interface location, a, and its derivative, <j, are 
calculated using I0, Ix, I2,73, and IA. 

(4) New values of IQ, I{, I2, 73, and 74 are calculated using 
the a and a values calculated at Step 3. 

(5) Corrected values of a and a are calculated (with Adams-
Moulton corrector formula) using the I0, / , , I2, I3, and IA 

calculated at Step 4. 
(6) The corrector algorithm is repeated until a and <j satisfy 

a convergence criterion. 

Once the location of the interface is calculated, the 
temperature distribution in both regions can be calculated us
ing, 

M T ) = £ /3,m4>,m, 62(T) = V* £ ) /32m</,2„„ 
m = l 

which can be written as, 

" _ 2 ( - l ) < 

and 

MO= £ 
/M7T 

( / , ( m , T ) + / 2 ( T ) ) s i n ( — - J , 

(47) 

(48) 

<Mi") = r; L sinfwTT- ) : 

VT^CT^^Tl V 1-ff/ W 

["ff(l-o-) v • / - ^ - f f \ 

m = l 

hi l - e x p ( - w 2 ( / 3 ( r ) - / 3 ( T - A T ) ) ) 

2 ] (exp(-n 2 / 3 ) / (m 2 - /J 2 ) ) 
n = l 

- ln ( l -<r (T-AT)) £ w sin(/«7r —) 
m = l V 1-ff / 

X ( l - e x p ( - w 2 ( / 3 ( r ) - / 3 ( r - A r ) ) ) ) 

X £ (exp(- /7 2 / 3(r-Ar)) / (d) 2- /7 2)) 

OO 

+ ^ l r 2 L/ ™ sin(#jnr — ) 
m = l V 1-ff / 

T-AT - l n ( l - o - ) r 
Jo (1-CT)2 

x £ e x p ( - « 2 / 3 ( r ) ) r f f l ] 

e x p ( - / « 2 ( / 3 ( T ) - / 3 ( r ) ) ) 

n = l 

Defining a new dimensionless temperature, <p, 

<P=— + 0„ l<o, 
a 

y* 
+ 1, £>ff. 

(49) 

(50) 

The new dimensionless temperature, <p, will be used for the 
temperature distributions. 

3 Results and Discussion 

Results are presented for three different cases. The first case 
is for a solid Stefan number, Sj =0.1 and a liquid Stefan 
number, S2 = 0.1 (the diffusivity ratio A, is unity and the li
quid is at freezing temperature initially). This case was selected 
as there are existing perturbation solutions for low Stefan 
numbers. Figure 1 shows the location of the interface as a 
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Fig. 3 Interface location for Stefan numbers S-| = 0.5 and S2 = 0.5 

function of time. The other two curves are plotted for com
parison. The lower curve is the solution for the semi-infinite 
medium. The upper two curves represent the present solution 
and the integral solution of Charach and Zoglin (1985). The 
two curves are in perfect agreement. The solidification time 
for the finite domain problem is always seen to be shorter than 
the time given by the semi-infinite solution, i.e., the lower 

curve. Figure 2 shows the transient insulated wall 
temperatures. For comparison, the intergral solution 
(Charach and Zoglin, 1985) is also plotted. Since the integral 
formulation assumes a finite penetration depth in the liquid 
phase, the insulated wall temperature remains unchanged until 
the diffusion front arrives. Therefore, the results of the in
tegral solution for small time are not valid. The results of the 
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present method again match perfectly with the integral solu
tion for larger time. Note that for this set of parameters, the 
insulated wall temperature drops to the interface temperature 
at T = 1 . 2 , whereas complete solidification occurs at T = 5 . 3 . 
The reason is that the diffusivity ratio is unity, i.e., a, =a2, 
and, hence, the heat diffusion in the liquid is not very slow. 

The other two cases are presented for solid and liquid Stefan 

numbers of 0.5 and two different diffusivity ratios, namely 
A = 0.1 and ,4 = 10. The liquid is assumed to be at a 
temperature twice the freezing temperature. The integral solu
tion (Charach and Zoglin, 1985) and the perturbation solution 
(Weinbaum and Jiji, 1977) are not applicable for these cases. 
Figure 3 snows the location of the interface for the two dif
fusivity ratios, given by the present method for the finite 
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medium and the solution for the semi-infinite domain for 
comparison. For both diffusivity ratios, solidification time is 
faster in the finite medium. The two cases, however, are very 
different. For A =0 .1 , the thermal diffusivity of the liquid is 
much less than that of the solid and the heat diffusion in the li
quid is slow. Therefore, the finite domain solution follows the 
semi-infinite solution closely, and diverges from it only when 
the interface gets very close to the insulated boundary. In the 
other case, the diffusivity of the liquid is ten times higher than 
that of the solid, and hence the diffusion in the liquid is faster. 
Therefore, the solution for the finite domain diverges from 
that of the semi-infinite domain very early. Since both cases 
have the same Stefan numbers', the total amount of heat lost 
by the liquid phase during the process is approximately the 
same. However, when A = 10 (higher rate of heat diffusion in 
the liquid), the rate of heat loss from the liquid and the speed 
of the interface are higher. Figure 4 shows this effect. 
Although the soldification time is about the same for both 
cases, the insulated wall temperature drops very fast and 
sharply when A = 10, reaching the interface temperature at 
T = 0 .2 . For y l=0 .1 , on the other hand, the insulated boun
dary temperature drops gradually to that of the interface at 
T « 1.3, which is close to the total soldification time. Figure 5 
shows the transient temperatures at T = 0 .12 , T = 0 . 7 5 , and at 
full solidification. As can be seen, the temperature distribu
tion in the liquid for A ~ 10 drops to the interface temperature 
very fast, and the temperature distribution in the liquid is 
almost linear. In the other case, the temperature distribution 
in the liquid stays above the interface value till very late. The 
solid temperature distributions in both problems are very close 
to linear. 

Although the method was applied to a problem with con
stant initial and boundary conditions, it can also be applied to 
problems with arbitrary boundary and initial conditions. 
Apart from the verification of the convergence of the iterative 
solution for the finite domain presented here, this new method 
has been extensively tested and found to be convergent for the 
semi-infinite case (Dursunkaya, 1988), for all moderate values 
of the parameters. The method presented here is particularly 
suitable for assessing the accuracy of more versatile methods 

such as finite difference and finite element which could not be 
tested against existing exact solutions for semi-infinite 
domains. 
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Elastoplastic Finite Element 
Analysis of Three-Dimensional, 
Pure Rolling Contact at the 
Shakedown Limit 
This paper describes a three-dimensional elastoplastic finite element model of re
peated, frictionless rolling contact. The model treats a sphere rolling on an elastic-
perfectly plastic and an elastic-linear-kinematic-hardening plastic, semi-infinite half 
space. The calculations are for a relative peak pressure (p0/k) = 4.68 (the theoretical 
shakedown limit for perfect plasticity). Three-dimensional rolling contact is sim
ulated by repeatedly translating a hemispherical (Hertzian) pressure distribution 
across an elastoplastic semi-infinite half space. The semi-infinite half space is rep
resented by a finite mesh with elastic boundaries. The calculations describe the 
distortion of the rim, the residual stress-strain distributions, stress-strain histories, 
and the cyclic plastic strain ranges in the vicinity of the contact. 

Introduction 
Repeated three-dimensional rolling point contact is even more 

complex than the two-dimensional plane-strain problem. A 
review by Johnson (1986) examines the possible mechanisms 
of failure and predicts the nature of the residual stress state. 
Ponter et al. (1985) apply the kinematical shakedown theorem 
to investigate the mode of deformation for rolling and sliding 
point contacts. The authors calculate optimal upper bounds 
for both the elastic and plastic shakedown limits for varying 
coefficients of friction and shapes of the loaded ellipse. Bower 
et al. (1986) used the above-mentioned theorem to closely look 
at the conditions under which cumulative deformation occurs 
in the corner of the railhead. The corner of the railhead was 
idealized as an elastic-perfectly plastic quarter space. The study 
was further extended to a work-hardening quarter space. Hills 
and Sackfield (1984) study the yield and shakedown states in 
the contact of generally curved bodies, with and without fric
tion. Hills and Sackfield (1983a, 1983b, 1986) have done ad
ditional work treating the point contact problem 
mathematically. 

Kalker (1979) has developed a computer code for treating 
elastic three-dimensional rolling contact with dry friction. Kan-
nel and Tevaarwerk (1984) presented a computer model for 
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evaluating the subsurface stresses incurred during rolling/slid
ing contacts. Hardy et al. (1971) developed a finite element 
model of a rigid sphere indenting (not rolling on) an elastic-
perfectly plastic half space. Equations were obtained by Ham
ilton and Goodman (1966) for the complete stress field due to 
a circular contact region carrying a "hemispherical" Hertzian 
normal pressure and a proportional distributed shearing trac
tion. Chiu and Hartnett (1983) have presented a numerical 
method of solution for three-dimensional Hertzian contact 
problems involving layered solids. Hills and Ashelby (1982) 
have analyzed the residual stresses and their influence on the 
contact load bearing capacity for three-dimensional rolling. 
Rydholm and Fredriksson (1981) devised a finite element model 
for analyzing shakedown problems in three-dimensional rolling 
contacts for elastic-perfectly plastic and kinematic hardening 
material responses. As regards plastic deformations in the rim, 
Martin and Hay (1972) developed a three-dimensional finite 
element model to analyze yielding of rail material, the sub
sequent development of residual stresses, and plastic flow due 
to a moving load. Line contact of two cylinders or of a cylinder 
and a half space, with plane-strain deformation, has also been 
studied in detail (Bhargava et al. (1985a, 1985b, 1986), Merwin 
and Johnson (1963), Johnson and Jefferis (1963)). 

Though there exist a number of treatments of the three-
dimensional problem of rolling contact, the information ob
tained is limited. Most of the analyses employ elastic or elastic-
perfectly plastic material behavior. Some of them evaluate the 
shakedown limits and provide peak values of certain normal 
residual stresses. However, there is very little information on 
residual stresses, strains, and plastic strain range distributions 
in the half space, especially in the vicinity of the contact. Only 
two of the studies deal with the stress-strain history (Ponter 
et al. (1986), Bower et al. (1986)). Previous analyses have 
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Fig. 1 Three-dimensional finite element mesh 

z / w 

Fig. 2 Comparison of the circumferential stress, «„, as a function of 
normalized depth, z/vv, for an elastic indentation of the F.E. mesh (FE) 
with the closed-form solution (CFS), at a distance 0.125w from the YZ 
plane; Legend: O FE, A CFS 

required arbitrary simplifying assumptions; for example, in 
theoretical studies certain stresses were neglected, and in finite 
element studies the boundaries were assumed fixed. 

The present paper describes a three-dimensional elasto-plas-
tic finite element model of frictionless rolling contact that 
embodies the elastic-perfectly-plastic, as well as the elastic-
linear-kinematic-hardening-plastic, material response. The 
pressure distribution is assumed to be Hertzian throughout the 
analysis. The calculations are for a relative peak pressure (p0/ 
k) of 4.68 (the shakedown limit for a circular contact patch 
for pure rolling). Unlike other studies, these calculations em
ploy more realistic (elastically displaced) boundaries and pro
vide much more information: residual stress-strain 
distributions, residual displacements, stress-strain histories and 
cyclic plastic strain ranges in the half space. 

Description of the Finite Element Model 
Frictionless rolling of a sphere on a semi-infinite body is 

simulated by translating a semi-ellipsoidal pressure distribution 
over one face of a three-dimensional finite element mesh. A 
finite-sized mesh (Fig. 1) is used to represent a semi-infinite 
body by appropriately displacing the other faces of the three-
dimensional mesh. For this purpose, the semi-ellipsoidal pres
sure distribution is discretized into numerous concentrated 
forces. The displacements at the boundary nodes are then 
calculated for each of these concentrated forces using the so
lution to Boussinesq's problem of a single normal force acting 
on the boundary of a semi-infinite solid and then superposing 
this solution for many loads. All displacements are with ref

erence to a point at the bottom of the mesh directly under the 
center of the semi-ellipsoidal pressure distribution. To verify 
the validity of the model, stress versus depth values obtained 
from a purely elastic indentation of the three-dimensional mesh 
were compared with those from a program incorporating the 
closed-form elastic solution. The results show excellent agree
ment (Fig. 2). 

Making use of the symmetry of the pressure distribution 
about the rolling direction, the three-dimensional mesh has the 
shape of a quadrant of a circle extended in the third dimension. 
The present study, in the most general case, pertains to two 
mechanical components in a three-dimensional rolling situa
tion, and hence, the *-axis will be referred to as the axial 
direction, the .y-axis or the direction of translation as the cir
cumferential direction, and the z-axis as the radial direction. 
The mesh is dimensionally finer away from the displaced 
boundaries and coarser towards them. The mesh is 10w long 
(in the circumferential direction) and extends to a distance of 
5w in the axial and radial directions (the contact patch is 
assumed to be a circle of radius w). There were some doubts 
regarding the X and Z dimensions of the mesh. As described 
earlier, the boundaries are elastically displaced as the pressure 
translates. These boundaries are restored to their original un-
deformed state when the mesh is unloaded at the end of a 
contact cycle. If the mesh were too small, inaccurate answers 
would result since the residual state produced by the contact 
will have an effect on the elastic deformation of the half space. 
For this purpose a larger mesh (the X and Z dimensions four 
times the size of the original mesh) was devised. The results 

Nomenclature 

x = axial or out-of-plane coordinate, m 
y = circumferential or in-plane coordinate, m 
z = radial or depth coordinate, m 

p0 = peak pressure, MPa 
k = a0/lJ3 = von Mises shear yield strength, MPa 
kk-=ok/\.Ti = kinematic shear yield strength, MPa 
p0/k,pa/kk = relative peak pressure 

p(x,y) = pressure at any point, MPa 
w = radius of the contact circle, m 
E = Young's modulus, MPa 
v = Poisson's ratio 

M = plastic modulus, MPa 
G = shear modulus, MPa 

EPP = elastic-perfectly plastic 

*Yxy> 

ELKP = 
f = 

axx = 
Oyy = 
ff« = 

£« = 

A^/ = 
A T , / = 

AeqP/2 = 

elastic-linear-kinematic-hardening plastic 
parameter / for the residual state 
axial stress, MPa 
circumferential stress, MPa 
radial stress, MPa 
shear stress, MPa 
axial total strain 
circumferential total strain 
radial total strain 
shear total strain 
radial plastic strain range 
shear plastic strain range 
half equivalent plastic strain range 
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Fig. 3 Comparison of the normalized residual circumferential stress, 
ay/Ik, as a function of the normalized depth, z/w, for the large mesh and 
the small mesh, for EPP properties, at a distance 0.125w from the YZ 
plane; Legend: A small mesh, v large mesh 

z / w 

Fig. 5 Comparison of the normalized residual axial, axx'/kk, and circum
ferential, a„'lkk, stress as a function of the normalized depth, z/w, for 
one and two successive contacts, PS1 and PS2, for ELKP properties; 
Legend: O oxx'/kk-PSt, A axx'/kk-PS2, + axx'/kk- PS1, x axx'/kk- PS2 

b -0.04 

z / w 

Fig. 4 Comparison of the normalized residual circumferential stress, 
<jy//k, as a function of the normalized depth, z/w, for the fine mesh and 
the coarse mesh, at a distance 0,125tv from the YZ plane; Legend: O 
fine mesh, A coarse mesh 

z / w 
Fig. 6 Comparison of the normalized residual axial, txx'*G/kk, circum
ferential, ey/*G/kk, and radial, t^'G/kt, strain as a function of the nor
malized depth, z/w, for one and two successive contacts, PS1 and PS2, 
for ELKP properties; Legend: O txx" G/kk - PS1, A txx<* G/kk - PS2, + 
t„"Glkk- PS2, x e,/'G/kk-PS2, 0 iJ*Glkk- PS1, V Czz"Glkk- PS2 

from this large mesh were compared with those from the mesh 
shown in Fig. 1. As seen in Fig. 3, the stress distributions 
match very well. 

Initial calculations were done using lower-order (8-noded, 
linear displacement) brick elements. The mesh contained 1392 
elements and 1877 nodes. The initial results exhibited poor 
convergence characteristics. Finally, with CPU time for a con
tact cycle as the limiting factor, a finer mesh of the same size 
was developed. This mesh employed higher-order (20 or 27-
noded quadratic brick) elements closer to the contact and lower-
order (8-noded linear brick) elements away from the contact. 
It has 1392 elements and 4649 nodes. Figure 4 compares re
sidual stress distributions for the fine and the coarse mesh. 

The calculations employed two different material behaviors: 
(a) the more realistic elastic-linear-kinematic-hardening-plastic 
(ELKP) (Bhargava et al. (1986), Hahn et al. (1987)) behavior 
with ak = 1050 MPa and M = 188 GPa (see Fig. 24), and (b) 
the elastic-perfectly plastic (EPP) behavior with o0 = 393.98 
MPa, and were performed forp0/k = 4.68. Both models used 
the following elastic properties: Young's modulus, E = 207 
GPa, and Poisson's ratio, v = 0.3. The following assumptions 
were made for the analyses: (a) the contact area is a circle 
of radius w calculated from the material constants; this does 
not change after the semi-infinite body begins to deform plast
ically (w = 0.8 mm, and 0.3 mm for ELKP and EPP properties, 
respectively), and (b) the semi-ellipsoidal (here hemispherical) 

Table 1 Typical computational times for analyses 
Model Machine CPU Time For One 

Contact (Hrs.) 
Coarse Mesh 
Coarse Mesh 
Fine Mesh 
Fine Mesh 

VAX 11/785 
VAX 8800 
VAX 8800 
CRAY X-MP 

150 
15 
36 

1.5 

pressure distribution remains Hertzian throughout the anal
ysis. The Hertzian pressure is given by 

P(x,y) = A,(l - (x2 + y*)/w*r\ 
The semi-ellipsoidal pressure distribution was applied at one 

end of the mesh and translated incrementally through a dis
tance of 8vv to the other end. The translational increments 
varied according to the location of the pressure distribution. 
The first increment w was followed by two increments of 0.5w, 
sixteen increments of 0.25w, two increments of 0.5w, and, 
finally, one increment of w before the mesh was unloaded. 
The boundaries of the mesh were appropriately displaced at 
each increment. The application of the pressure distribution, 
followed by the 22 translational increments and the unloading, 
define a single contact cycle. The mesh was subjected to two 
cycles for each material behavior. The multipurpose finite ele
ment package ABAQUS was used for the analyses. The Cray 
X-MP was used for the calculation with the large mesh. All 
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Fig. 7 Comparison of the normalized residual shear strain, yr/kk, as a 
(unction of the normalized depth, zlvi, for one and two successive con
tacts, PS1 and PS2, for ELKP properties; Legend: O ysy" G/kk - PS1, A 
yxy"G/kk-PS2, + yx/'G/kk-PS-\, x yx/>G/kk- PS2, 0 y''G/kk-PSt, 
V y '• G/kk-PS2 
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Fig. 9 Residual Mises equivalent stress contours for a section of the 
mesh along the rolling direction for with ELKP properties (values are in 
N/m2 or Pa); Mises Eq. St.: 4 = 4.0E + 06, 5 = 1.2E + 07, 6 = 2.0E + 07, 
7 = 2.8E + 07, 8 = 3.6E + 07 

2W 

Fig. 8 Residual displaced meshes for a section of the mesh, (a) along 
(mag. fac. = 580) and (b) perpendicular (mag. fac. = 440) to the rolling 
direction for ELKP properties 

other calculations were carried out on the VAX 11/785 and 
the VAX 8800 (Table 1). 

Results 
The results describe the variation with depth of the residual 

stresses, residual strains and cyclic plastic strain ranges, sec
tions of the residual displaced mesh, residual stress-strain con
tours, and stress-strain histories for the two contacts. The 
residual stresses are normalized with respect to k or kk, the 
residual strains with respect to k/G or kk/G, and the depth 
with respect to w. All the residual stress, residual strain, and 
cyclic plastic strain range distributions as functions of depth 
are presented for integration points located at a distance of 
0.125w from the plane of symmetry (the YZ plane). Figure 5 
shows the residual axial and circumferential stress distributions 
for the ELKP material. These stresses attain peak compressive 

Fig. 10 Residual (a) axial and (b) circumferential stress contours for a 
section of the mesh perpendicular to the rolling direction for ELKP 
properties (values are in N/m2 or Pa); (a) a„/: 4 = -1 .9E + 07, 5 = 
-1.2E + 07, 6 = -5.0E + 06, 7 = -2 .0E + 06, 8 = +9.0E + 06, 9 = 
+ 1.6E + 07,10= +2.3E + 07,and(6)ff„*2= -4.4E + 07.3: -3.8E + 07, 
4 = -3.2E + 07, 5 = -2 .6E + 07, 6 = ' - 2 . 0 E + 07, 7 = -1.4E + 07, 8 
-8 .0E + 06, 9 = -2 .0E + 06,10 = +4.0E+06, 11 = +1.0E+07 
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Fig. 11 Residual (a) Mises equivalent stress (N/m2 or Pa) and (o) equiv
alent plastic strain contours for a section of the mesh perpendicular to 
the rolling direction for ELKP properties; (a) Mises Eq. St.: 3 = 1.2E + 07, 
4 = 1.8E + 07, 5 = 2.4E + 07, 6 = 3.0E + 07, 7 = 3.6E + 07, and (b) Eq. 
Plastic Strain: 3 = 1.2E-04.4 = 1.8E-04.5 = 2.4E-04.6 = 3.0E-04, 
7 = 3.6E - 04, 8 = 4.2E - 04 

•b 

to 

-0.0105 -0.0070 -0.0035 0.0000 0.0035 0.0070 

STRAIN 

Fig. 12 The radial, zz, and shear, yz, stress-strain curve for the first 
contact, at a depth of 0.528iv, for ELKP properties; Legend: o ^versus 
tz* A v versus y„ 

values at a depth of about 0.6w and become almost zero beyond 
1.6w. It is interesting to note that these stresses are tensile near 
the surface. Figure 6 shows the residual axial, circumferential, 
and the radial strain distributions for the ELKP material. These 
strains also reach a peak value at a depth of about 0.6w and 
become almost zero beyond 1.6w. Figure 7, on the other hand, 
presents the residual shear strain distributions for the ELKP 

z / w 
Fig. 13 Comparison of the normalized residual axial, txx"G/k, circum
ferential, ty/'G/k, and radial, ea

r*G/k, strain as a function of the nor
malized depth, z/w, for one and two successive contacts, PS1 and PS2, 
forEPPproperties;Legend:O e„ r*G/fr-PS1, A 
/ t -PS1, x c " G A - P S 2 , O e"G/ fc -PS1, V e '*G/fr-PS2 

z / w 
Fig. 14 Comparison of the normalized residual shear strain, y'lk, as a 
function of the normalized depth, z/w, for one and two successive con
tacts, PS1 and PS2, for EPP properties; Legend: o 7 „ / * G * - P S 1 , A 
yxy"G/k-PS2, + Y „ ' * G / * - P S 1 , x yx/*G/k-PS2, O yy/'G/k-PS-\, V 
yy/'G/k-PS2 

material. Here, yx/ is insignificant compared with the other 
two components; yxz

r achieves a peak at 0.6w while yy/ does 
at 0.8ve. Once again they taper off beyond l.6w. The presence 
of large residual axial strains, exx

r (Fig. 6) and the relatively 
large residual out-of-plane shear strain (even at a distance of 
0.125w from the YZ plane), yxz

r (Fig. 7), is evidence of plough
ing. From Figs. 5,6, and 7 we observe that for all stresses and 
strains, the distributions for the second contact virtually over
lap those for the first contact. Residual distortions for sections 
(for Figs. 8, 9, 10, 11, and 16 the sections are indicated by 
miniature line sketches of the three-dimensional mesh) of the 
mesh, along and perpendicular to the rolling direction, are 
shown in Fig. 8. For an ELKP material there is little forward 
flow during the first contact (of the order of 10~5 fim) and 
none during the second. Figure 9 displays the residual Mises 
equivalent stress contours for a section of the mesh, along the 
rolling direction, after one pass. The equivalent stress reaches 
peak values of about 40 MPa at a depth of 0.6w. Figures 10 
and 11 present additional residual stress and strain contours 
for a section of the mesh perpendicular to the rolling direction. 
Figure 10 shows contours for the residual axial and circum
ferential stresses after one contact. The residual tensile com
ponent observed beneath the peak pressure (Fig. 5) extends all 
the way to the edge of the contact. In Fig. 11, which displays 
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-3.0 -2.0 -1.0 0.0 1.0 _ 

Fig. 15 The shear, yz, stress-strain curve for one and two contacts, at 
a depth of 0.47tv for EPP properties; Legend: O PASS1, A PASS2 

1 

2W 

f 

Fig. 16 Residual shear stress r„ f , contours for a section of the mesh 
perpendicular to the rolling direction for EPP properties. (Values are in 
N/m2 or Pa); r«r: 6 = -5 .0E + 07, 7 = -2.0E + 07, 8 = +1.0E + 07, 9 = 
+ 4.0E + 07, 10 = +7.0E + 07 

Mises equivalent stress and equivalent plastic strain contours 
after the first contact for the ELKP material, the plastic region 
appears to extend in the X and Z directions up to about 1 Aw. 
Figure 12 presents stress-strain curves for the ELKP study after 
one cycle at a depth of 0.528w. The approach to shakedown 
is hard to observe (the stress-strain loop for the first contact 
resembles that for a linear elastic material). 

Elastic-perfectly plastic calculations were also performed for 
p0/k = 4.68; Figs. 13 and 14 present the residual strain dis
tributions as a function of depth. Although these results are 
similar in character to the ELKP case, there is a second-order 
of magnitude difference in the strains. Also, the forward flow 
for the EPP case (as is apparent from yyz

r versus depth in Fig. 
14) is larger than for the ELKP material (of the order of 0.01 
jim). Figure 15 shows the Tyz versus yyz plot at a depth of 0.47ve 

Fig. 17 Comparison of the radial, ACz/, and shear, Ayf!r>, cyclic plastic 
strain range as a function of the normalized depth, z/w, for ELKP and 
EPP properties; Legend: O V - ELKP, A Ayvj>- ELKP, + AtJ>- EPP 
x A y , / - E P P ' 

z / w 

Fig. 18 Comparison of the half equivalent plastic strain range, Aecfl2, 
as a function of the normalized depth, z/w for ELKP and EPP properties; 
Legend: o ELKP, A EPP 

for two contact cycles. Steady-state appears to have been at
tained after one cycle for the EPP material. Figure 16 presents 
contours for the residual shear stress rxz

r after one pass. The 
peak value, 70 MPa, is at a depth of w and at a distance of 
vi away from the plane of symmetry (the YZ plane). 

The results for the EPP and the ELKP behavior are com
pared in Fig. 17, which describes the radial plastic strain range 
Aezz

p, and the shear strain range Aeyz
p distribution, and in Fig. 

18, which exhibits the half equivalent plastic strain increments. 
The cyclic plastic strain ranges confirm the extension of the 
active plastic zone to a depth of about 1.4w. Figures 19 and 
20 compare the residual axial and circumferential stress dis
tributions for the ELKP and the EPP material behavior. Fig
ures 6, 7, 13, 14, and 17-20 illustrate that the residual stresses, 
strains, and cyclic plastic strain ranges for the ELKP case are 
between one and two orders of magnitude less than those for 
the EPP calculation, although the depth of the plastic zone 
remains virtually unchanged. Figures 21 and 22 compare find
ings for the three-dimensional contact with the earlier results 
for two-dimensional line contact. Also, the peak residual 
stresses from the present study are compared with the math
ematical predictions of Hills and Sackfield (1984). As observed 
in Fig. 23, for the EPP material, the peak residual axial stress 
from this analysis agrees with, but the circumferential stress 
is 50 percent greater than, that of Hills and Sackfield. 
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< 

0 0.5 1 1.5 2 

Z / W 

Fig. 19 Comparison of the normalized residual axial, xx, stress as a 
function of normalized depth, z/w, after one contact cycle, for ELKP and 
EPP properties; Legend: o ELKP, A EPP 

b -0 .5 

< 
DC 

o 

z / w 
Fig. 20 Comparison of the normalized residual circumferential, yy, 
stress as a function of normalized depth, z/w, after one contact cycle, 
for ELKP and EPP properties; Legend: o ELKP, A EPP 

\ 

Fig. 21 Comparison of the normalized residual axial stress, axx'/k, as a 
function of the normalized depth, z/w, after one contact cycle for EPP 
properties for pure rolling 3-D {pjk = 4.68) and 2 D plane strain (pjk = 
5.0) calculations; Legend: O 3-D, A 2-D 

Discussion 
As reviewed by K. L. Johnson (1986), four regimes of steady-

state behavior can be identified for elastic-plastic bodies sub
jected to repeated rolling contact: (1) purely elastic, (2) elastic 
shakedown, (3) cyclic plasticity or plastic shakedown, and (4) 
incremental collapse or ratchetting. Significant contributions 

Fig. 22 Comparison of the normalized residual circumferential stress, 
ay/Ik, as a function of the normalized depth, z/w, after one contact cycle 
for EPP properties for pure rolling three-dimensional {pjk = 4.68) and 
two-dimensional plane-strain {pjk = 5.0) calculations: Legend: o 3-D, 
A 2-D 

Fig. 23 Peak residual axial and circumferential stress as compared with 
analytical predictions [18, 191. {alb = ratio of the axes of the contact 
ellipse, alb = 1 for the present study) values for alb = 10 are estimated 
from analyses of line contact for the same material; Legend: ffy/HILLS, 
ff,/HILLS, 9 a 'EPP—three-dimensional, O <rx/EPP—three-dimen
sional, A Oyy' ELKP—three-dimensional, x oxx< ELKP—three-dimen
sional, V Oyj EPP—two-dimensional, + oxx' EPP—two-dimensional, O 
u„' ELKP—two-dimensional, o "xx

r ELKP—two-dimensional 

Fig. 24 Schematic representation of the cyclic stress-strain hysteresis 
loop, showing the bilinear, three parameter: E, ok and M, representation 
referred to as elastic-linear-kinematic-hardening plastic (ELKP) behavior 

to the field of rolling contact have been restricted to two-
dimensional plane-strain rolling contact or line contact (a rigid 
cylinder rolling on the plane surface of an elastoplastic half 
space). Here, the surface remains flat after rolling and the 
possible state of residual stress is restricted to four components, 
namely a„r, oyy\ ozz

r, and rn
r (all functions of depth z only). 

In such a case, the only possible mechanism of ratchetting is 
shear, parallel to the free surface. Unfortunately, the three-
dimensional rolling situation or point contact of a ball rolling 
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on a plane surface is much more complicated. In point contact, 
all six components of residual stress are possible. (Figs. 5, 10, 
16, 19, and 20) and they are functions of the axial distance x 
and the depth z. When a ball rolls on a plane surface, it creates 
a groove or a rolling track by ploughing the surface. This 
ploughing is expected to be promoted by elongation of the 
contact ellipse in the rolling direction. Contrary to the pre
dictions (Ponter et al., 1985), the large residual axial strains, 
e^f and residual shear strains, yxz

r (Figs. 6, 7, 13, and 14), 
even for a circular contact patch, are evidence of significant 
ploughing. 

Only part of the rolling surface is in direct contact with the 
translating Hertzian pressure distribution, and, hence, the ma
terial at the sides of the rolling track remains permanently 
undeformed. The only possible mechanism for ratchetting is 
plastic shear on a single curved surface, whereby a thin segment 
immediately beneath the rolling track can displace relative to 
the surrounding material parallel to the rolling direction. For 
ratchetting to occur in a pure rolling situation, very high con
tact pressures will have to be applied, a p0/k of 11.0 for an 
EPP material (this value was obtained approximately by ex
trapolating Johnson's (1986) results)). On the other hand, for 
elastic shakedown, the elastic limit is exceeded during the first 
cycle, after which steady-state is achieved and for subsequent 
contacts the deformation is purely elastic. The present study 
deals with elastic shakedown (p0/k of 4.68 for a circular contact 
patch for pure rolling), and for the EPP case this is exactly 
what is observed (Figs. 13, 14, and 15). On the other hand for 
the ELKP material response, which is a more realistic model 
for high strength bearing steels, the plastic strains produced 
during the first contact cycle are so small that it is difficult to 
follow the approach to shakedown (Figs. 6, 7, and 12). Also, 
the residual stresses and strains and the plastic strain ranges 
for the ELKP case are very small (1-10 percent) compared 
with those for the EPP material (Figs. 19, 20, 6, 7, 13, 14, 17, 
and 18). This is because of the high hardening rate—large M 
value—displayed by hardened steel. Contact pressures above 
the elastic shakedown limit but below the ratchetting limit, 
where cyclic plasticity or plastic shakedown would be expected 
in the steady-state, are dealt with in other papers (Kulkarni et 
al., 1989a, 1989b). 

The ploughing of the surface by three-dimensional rolling 
contact results in strain gradients in the axial direction. Also, 
the elastically deformed material, just below the pressure dis
tribution, tries to recover to its original shape when the mesh 
is unloaded. These two factors result in residual tensile stresses 
close to the surface extending to the edge of the contact patch 
(Figs. 5 and 10) and residual shear stresses across the half space 
(Fig. 16). This could be unfavorable for a mechanical com
ponent subjected to repeated rolling contact, at high contact 
pressures. Such a residual stress state superimposed with the 
stresses due to a repeated translating contact could promote 
cyclic crack growth (all modes) eventually resulting in failure. 
The present three-dimensional model is quite general and has 
been used to treat the elliptical railwheel contact at pressures 
above shakedown. Results of these calculations will soon be 
published (Kulkarni et al. 1989a, 1989b). In addition to treating 
point contact phenomena, such as a smooth ball in a race, the 
extension of the present three-dimensional model to rolling 
plus sliding may provide insights into the contacts of rough 
surfaces. These would be obtained by applying the model to 
the microasperity contact. 

Earlier results for EPP behavior by Johnson (1986) and 
Ponter et al. (1985) lead to common solutions for all materials 
when normalized with respect to p0/k. The present findings 
show that the results obtained with the more realistic ELKP 
cyclic constitutive relations depart radically from those for 
perfect plasticity. Further, the results are different for materials 
with different strength levels which display different kk and 
M values. Consequently, the present calculations for material 

parameters appropriate for hardened bearing steels, are not 
expected to be valid for other materials. In addition, ELKP 
behavior must also be viewed as an idealization that does not 
reproduce all the second-order effects, such as the very gradual 
changes in conformity discussed by Johnson and Kapoor 
(1987). 

Conclusions 
(1) Elastic-plastic three-dimensional repeated, pure rolling 

point contact has been modeled with the finite element method 
for elastic-perfectly-plastic and elastic-linear-kinematic-hard-
ening-plastic material behavior. The analysis defines the re
sidual stress-strain distributions, stress-strain histories, and the 
cyclic plastic strain ranges in the vicinity of the contact. 

(2) Steady-state was achieved fairly quickly; it was diffi
cult, to follow the approach to steady state for the ELKP case, 
and steady state was achieved after one cycle for the EPP case, 
as seen from the stress-strain plots. 

(3) As expected for the three-dimensional case and estab
lished for the two-dimensional case, the residual stresses, the 
residual strains and the cyclic plastic strain ranges for the ELKP 
response are up to two orders of magnitude smaller than those 
observed in the EPP behavior. The peak residual axial stress 
after one contact is 25 MPa for the ELKP case, and 340 MPa 
for the EPP case. 

(4) For a p0/k of 4.68 (shakedown limit), neither the EPP 
nor the ELKP material exhibited cyclic plasticity after the first 
contact. 

(5) During the first contact, the residual strains perpen
dicular to the rolling direction (ploughing) far exceed the re
sidual strains in the rolling direction. 

(6) At higher loads, the cumulative effect of ploughing, 
residual tensile stresses on the surface and the complex system 
of residual stresses across the half space could be detrimental 
to the fatigue life of a rim. 
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The Response of an Infinite 
Railroad Track to a Moving, 
Vibrating Mass 
We examine vibrations that arise when a moving, vibrating load passes over an in

finite railroad track lying on a Winkler foundation. Solutions are presented for both 
moving and stationary vibrating loads as a function of both the mass and driving 
frequency of the load as well as the physical properties of the track. For a stationary 
vibrating load, resonance occurs at lower driving frequencies as the mass of the load 
increases. For a moving vibrating load, resonance occurs at lower driving frequen
cies when the velocity and/or mass of the load increases. 

Introduction 

Railroad tracks vibrate when they are subjected to a mov
ing, vibrating load. Because these vibrations could damage 
supporting structures, structural engineers have sought to 
understand them since the mid-nineteenth century. 

In one of the earliest and most successful models by 
Timoshenko (1926), the track is considered to be an elastic 
beam on a massless Winkler foundation. Using this model, he 
found the deflection of the track due to a load and examined 
the system for resonance. For a stationary, vibrating load, 
resonance occurs at the frequency (kw/m)x/1 where kw is the 
Winkler constant and m is the mass of the track per unit 
length; for a moving, steady load, resonance occurs when the 
load's speed equals (4kwB/m2)U4 where B is the bending stiff
ness (rigidity) of the beam. 

Recently, Patil (1988) extended Timoshenko's analysis by 
examining the effects of the mass of a stationary, vibrating 
load on the resonant frequency. He solved the problem by 
finding the displacement of an initially quiescent beam when it 
is subjected to an impulsive, vibrating load. Resonant solu
tions were again found. Resonance will occur at lower and 
lower driving frequencies as the mass of the vibrating load is 
increased. 

Although Patil's solution is interesting, it is limited because 
the load is stationary. Furthermore, his solutions only apply to 
the limit of t~°°. In this paper we find the response of an in
finite railroad at any arbitrary time when a heavy load both 
moves and vibrates. We may also view our study as a 
generalization of the work of Mathews (1958) and Chonan 
(1978) who found the forced solutions generated by a 
massless, vibrating, impulsive load as it moves along a rail. 
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In Section 2, we introduce the governing equations, boun
dary conditions and initial conditions. In Section 3, we give 
the solution for a vibrating, stationary load. Patil's solution is 
extended and the solutions are illustrated for various 
parameters. In Section 4, we present the solution for the mov
ing, vibrating load. Finally, we state the conclusions in Section 
5. 

Governing Equations 

For a uniform track, the dimensional vertical displacement 
w' of the track at the point x' and time t', subjected to the 
loadp' (x' ,t') is given (Volterra and Zachmanoglou, 1965, p. 
374) by 

B 
d4w' 

+ m 
d2w' 

+ k„ --p'(x',t'). (1) 
dx'4 dt'2 

The units of B,m, and kw are Nm2, kg/m, and N/m2, respec
tively. In this paper we assume that the load consists of a 
wheel of mass M that is in continuous contact with the track 
and vibrates with the angular frequency u0. Consequently, if 
the wheel moves at the dimensional speed V, the dimensional 
load is 

p'{x',t') = [p c o s ( w 0 r ' ) - M - ^ - ] 5 ( * ' - Vt') (2) 

where 5( ) denotes the delta function and P is the amplitude of 
the vibration. In (2), the load is initially located at x' = 0. If we 
now substitute (2) into (1), and replace the substantial 
derivative associated with the moving frame with its counter
part in the stationary reference frame, we obtain 

d4w' d2w' , r 
B „ ,„ +m „ ,, vkww'= \Pcos(u0t ) dx'4 dt' 

( d2w' d2w' „ d2w' \1 

Equation (3) may be made dimensionless via the definitions: 
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so 
1 
4 

Vf' = 

a2 = 

that 
94w 
dx* 

H 

P 

WCO2, 

kw 

• + -

Y?U-

-, A = 

d2w 
dt2 

d2w 

/ AB \ 1/4 

n V /7/COn / 

M 
, U= 

m . co, 

AB ^ 1/4 

,?\ 1/4 

o0 V AB ) 

d2 

- a 2 w = | c o s ( 0 - A ( - w 

d2W 

^is+"•!?•)]«>-*>• (4) 

The value of a gives the ratio of the natural frequency of the 
track to the forcing frequency. 

Although (4) could be used in our analysis, it is more conve
nient to define a coordinate system moving with speed U. If 
we define z = x—Ut, then (4) may be written as 

1 d4w d2w 
+ dzA dt2 

d2w „ d2w 
-1U-^— +U2 

dzdt dz2 

+ a2w= cos ( / )~ A 
d2w 

dt2 •]«(«). (5) 

Turning to the boundary conditions, we require that the 
solution must vanish as z ~ ±oo. Because the beam is initially 
at rest, the initial conditions are w(z,0) = w, (z,0) = 0. 

We solve (5) using Fourier and Laplace transforms. If we 
assume that w(z,t) possesses a Fourier transform W(k,s) 
defined by 

v>(z,t)=—\* W(k,t)e<k*dk, (6) 
2ir J - » 

and that W(k,t) possesses a Laplace transform W{k,s) de
fined by 

(7) 

(8) 

W(k,s)=\°° W(k,t)e-~s<dt, 

then (5) may be transformed into 

( — k^-lflk2- 2iUks + s2 + a2) W 

in which w(Q,s) is the Laplace transform of w(0,t). Next, we 
consider different cases depending upon the value of U. 

Stationary Load 

The case of a stationary load (f/=0) was studied by Patil 
(1988). To find the inverse w(x,t) of (8), we first invert the 
Fourier transform so that 

w(x,s 
1 f " 

2ir J -o 

s2 + l 
-As2w(0,s) 

eikxdk. (9) 

To evaluate (9), we close the line integral with an infinite 
semicircle either in the upper half or lower half of the fc-plane. 
According to Jordan's lemma (Hildebrand, 1962, p. 556), the 
contour must be in the upper half-plane for x>0 and in the 
lower half-plane for x < 0 . Once we close the contour, (9) may 
be evaluated by Cauchy's residue theorem. Equation (9) has 
four simple poles located at 

kl=(l + i)(s2 + a2)u\ k2 = (-l + i)(s2 + a2)m 

•• (1 - i) (s2 + a2)174, k4 = ( - 1 - i) (s2 + a2)1 (10) 

For positive, real s and the proper choice of the branch 
(s2 + a2)1 / 4 , kx and k2 lie in the upper half-plane and k3 and 
k4 lie in the lower half-plane. Consequently, after application 
of the residue theorem, we find that 

w(x,s) 
s2 + l 

-As2vV(0,5) 

exp[-(s2 + a2yM\x\] 
2(s2 + a2)3M 

X {sin[(s2 + a2)1 / 4 lArl] + cos[(s2 + a2)1 /4 Ixl]) ( ID 

If we evaluate (11) at x = 0, we can solve for w(0,s) and then 
eliminate it from (11), so that 

sexp{-(s2 + a2)m\x\] 
w(x,s) = 

(52 + l)[2(s2 + a2)3 / 4 + As2] 

x {sin[(s2 + o:2)1/4 be I] + cos[(52 + a2)1 / 4 Ixl]] (12) 

If we invert the Laplace transform (12) with the Bromwich's 
integral (Hildebrand, 1962, p. 602), then we must consider the 
branch of the multivalued function (s2 + a2)lM. We derived 
(12) by assuming that the poles k{ and k2 lie in the upper half 
of the £-plane. This implies that 0 < arguments of k{ and 
k2<ir or , equ iva len t ly , - i r / 4 < the a rgument of 
Cs2 + a2)1/4<3Ti74 in kx and -37r /4< the argument of 
(s2 + a2)174 < 7r/4 in k2. Because (12) was obtained by combin
ing terms that depend on both k{ and k2, - i r / 4 < t h e argu
ment of (s2 + a2)1 / 4 < 7i74. 

Turning our attention to the inversion of (12), we write the 
inverse as the contour integral 

w(x,t) = 
1 fc+/a° sexp(s/-(.s2 + a2)1/4 Ixl; 

2m Jc-ioo (s2 + l)[2(s2 + a2)3 / 4 +As2] 

X (sin[(52 + a ) 1 / 4 UI] + cos[(s2 + o;2)1/4 \x\]]ds (13) 

in which c is chosen so that the contour passes to the right of 
any singularities. There are a number of singularities in (13). 
There are poles at s = ± /, branch points at s = ± iot and poles 
at 2(s2 + a2)374 + As2 = 0; these poles are found by solving 
numerically 

A458 - 16s6 - 4 8 a V - 48a452 - 16a6 = 0. (14) 

Solutions to (14) consist of four conjugate pairs; only one pair 
s= ±is0 lies on the proper Riemann sheet. The value of s0 was 
computed numerically from (14) for various a's and A's. It 
was always found that 0<s0<a. For a fixed A, s0 increased 
monotonically with increasing a; for a fixed a, s0 decreased 
montonically with increasing A. As A became very large, s0 

decreased very slowly for moderate values of a. 
In addition to determining the location of the singularities, 

we must lay out our branch cuts. They are taken to run to the 
left of the branch point, parallel to the real axis, and out to in
finity (see Figs. 1, 3, 5) with — ir<phases of s±ia<ir. 

At this point, we consider the three cases of a > 1, a = 1, and 
a < l . 

(a) a > l . When a > l , the contour from c—ooi to c+aoi 
may be closed as shown in Fig. I. Our choice of contours was 
dictated by the requirement that — Tr/4<the argument of 
(s2 + a2)1 / 4<7r/4. 

From the integration, we obtain contributions both along 
Cj and C4 and along one side of each of the branch cuts C2 

and C3. Integrations along the arcs AB, CD, and EF vanish 
because of Jordan's lemma. To evaluate the integral along the 
line contour Cit we let s= — ip, s — ia= (p + a)e~h/2, 
s+ia= (p — a)e~" r / 2 for a < p < a > and to evaluate along the 
line contour C 4 , we let s-ip, s — ia= (p — a)e,lr/2, 
s + ia= (p + a)eh/2 for a < p < o o . Direct substitution into (13) 
and simplification yields 
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i r" 1 f 
27T Jo 

p[Ap2 + V2(p2-a2)3 / 4] 
dp 

(1 - p2) {[Ap2 + V2 (p2 - a2)3M]2 + 2(p2 - a2)3 / 2 \ 

x (exp[-V2(p 2 -a 2 ) 1 / 4 L*l][sin(pO-cos(pO] 

+ cos[pf-V2(p 2 -a 2 ) 1 / 4 \x\] + sin[pt-y/2(p2-a2yM \x\]} 

1 f6 V2p(p 2 -a 2 ) 3 / 4 

27T Jo 
* 2TT L (1 -p 2 ){ [Ap2 + V2(p2 - a2)3 / 4]2 +2(p2 - a2)3 /2 , 

X Sexp[-V2(p2-a2)1 / '4 bd][sin(pO+cos(pO] 

+ cos [p / -V2(p 2 -a 2 ) 1 / 4 lx l ] - s in [p / -V2(p 2 -a 2 ) 1 / 4 lx l ] ) (15) r r l „ n i / 2 . 
in which * = . and * = oo. 6 = [ p ( p 2

+ 4 a W 4 [ l - [ — - '> ] ] 

in which 

^ = p ( l + a 2 + p 2 ) [ 2 S - A ( p 2 - a 2 ) ] 

- a(l - a2 - p2)(2Aap + 2R) 

B = p(l+a2+p2)[2Aap + 2R] 

+ ot(l-a2-p2)[2S-A(p2-a2)] 

D=[(\+p2-a2)2+4a2p2][[A(p2-ot2)-2S}2 

+ [2Aap + 2R]2 J 

p=HpM t tr]-;u[j-v;4 a 2 ) l / 2]1 / 2] 
1 „ ~\ 1/2 >, 1/2 

2(p 2+4a 2) ' 

1 

The integrals along the branch cuts are somewhat more dif
ficult to evaluate. For example, along C2, we find that 1 f 1 , 1 i 
s = _ p - / a , 5 + /'a = p e - and s - / a = ( p 2 + 4 « 2 ) 1 / 2

e - '« , * = ~y~ ( P ~ 2 ) [-y- P ( P 2 + 4 C X 2 ) " 2 + — p2J 
0 < p < oo. The angle 6 measures the direction from the branch 
point s = icx to any arbitrary point s along the contour C3 (in 1 r 1 2 /2 

the negative sense). When these definitions are substituted into ~2~ ^+"> i~Y~ P(P + 4a ) 
(13), we obtain terms containing eWM and e~3/W4. To eliminate 
these terms we note that cos(0) = - p / ( p 2 + 4 a 2 ) 1 / 2 so that _ _J_ (p_n^l_}_ 2 4 2\i/2 * 
multiple-angle trigonometric identities may be used. After ~~ 2 L 2 P + 2 
some algebra we obtain 

/ , = - — [°° — e-"'le-QM[cos{at + P\x\) 
2vr Jo D 

2 (P+ Q) [-y- P (P1 + 4a2)1 /2 + - y - P 2 

-e-pi j r l[cos(Q:^-Qlxl) + s in(a / -Qlxl ) ] 

+ e-"'(e-e | j f i[cos(ar + P U I ) + sin(Q:? + PlA:l)] 

+ e - p u l [ cos (a / -QUI) - s in (o : / -QUI) ] l c?p (16) 

- s i n t o + P 1x1)1 T n e r e is n o contribution from the integration around the 
branch points at 5= ±ia. 

In addition to the integrals, there are four simple poles given 
by s= ±i and s=±isQ. However, when A = 2 ( a 2 - 1)3/4, the 
pole at s= ±i becomes second order. Thus, we have, in 
general, that 

w{x,t) = 
c o s ( O e x p [ - ( a 2 - l ) 1 / 4 Ul]{sin[(a2 - 1)1/4 UI]+ cos[(a2 - 1 ) 1 / 4 UI]] 

2 ( a 2 _ ! ) 3 / 4 _ A 

2cos(V)exp[-(a 2 - . s 2 ) 1 / 4 Ul](sin[(a2-s§)1 / 4 UI] + cos[(a2-5§)1/4 UI]] 

( l - sg ) [3 ( a 2 -5 2 ) - 1 / 4 + 2A] 
+ / 1 (a ,oo)+/ 2 , 

W V W W W v W W V V \ « ^ i i i 
ĉ  ^-» C3 

c2 

AA/WVW>AAAA/VW\/i i j - i a 

,.Cl 

,c4 

ISQ 

i ' - i so 

and for A = 2(a2 — 1)3/4 we have the resonant solution 

( a 2 - l ) 1 / 4 

w(x,t)-

<*- -r) 
s i n ( O e x p [ - ( a 2 - l ) 1 / 4 U I ] 

X (sin[(a2 - 1) , /4 UI] + cos[(a2 - 1)1/4 UI]) 

(c,0) 

U l c o s ( / ) e x p [ - ( a 2 - l ) 1 / 4 U I ] 

A(a2- - L ) (ori-l)i /2 

3 c o s ( / ) e x p [ - ( a 2 - l ) 1 / 4 U I ] 

s in [ (a 2 - l ) 1 / 4 UI] 

64 («2--J-)2(«2-D3 

(17) 

1 \ 2 

T 
X {sin[(o:2- 1)1/4 UI] + cos[(a2 - 1)1/4 UI]) +/ ,(a ,oo) + / 2 . 

(18) 

The most important difference between (17) and (18) is the 
linear growth with time of the second solution. Physically, this 

Fig. 1 Contours employed in the inversion of the Laplace transform solution corresponds to a case in which the driving force 
(11) for «>1. A wavy line denotes branch cuts. resonates with the beam. From the behavior of s0 with a and 
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Fig. 2 Deflection of a beam with time as a function of distance from 
the stationary, vibrating load. Parameters are « = 2 and A = 1. 
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Fig. 4 Same as Fig. 2, except for <* = 1 
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Fig. 3 Same as Fig. 1, except for the a = 1 case 
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Fig. 5 Same as Fig. 1, except for « < 1 case 

A, we find that as we increase the mass of the load, the reso
nant driving frequency lowers. 

In Fig. 2 we illustrate the solution to (17) when a2 = 2 and 
A = 1 for various times t. The integrals were computed using 
Simpson's rule. The mesh size was chosen so that 
lw(x,0) I < 10"3. We increased the accuracy of the numerical 
integration of I2 by introducing a new independent variable 
r) = ln(p). Note the skin effect in the wave solution due to the 
presence of the bending term. 

Similar calculations were performed for the resonant case. 
The spatial dependence is similar to that for the nonresonant 
case. Eventually the solution grows linearly with time. 

(b) a = 1. When a = 1, the contour from c - a>j to c + O°J is 
closed as shown in Fig. 3. Once again we have contributions 
from integrals along the contours C{ to C4. However, the only 
singularities within the contour are located at s= ±is0. 
Because the singularities at s = ±; and the branch points coin
cide, there is a contribution from the integration around the 
branch points. It is computed by introducing the infinitessimal 
circle around the branch points s±i = e eie and by preforming 
the line integrals in the limit as e^O. Consequently, the solu
tion for a = 1 is 

w(x,0 = 
2cosCV)exp[-(l-^)1/4btl] 

(1 -sl){3(\ - ^ ) - 1 / 4 + 2A] 

X [sin[(l -s2
0)

lM \x\] + cos[(l -sl)lM \x\] 
3 cos(f) 

4A 
+ /1(l + ,a>)+/2 (19) 

in which 1+ denotes a number that is slightly greater than one 
because I{ is singular at a = 1. 

In Fig. 4 we illustrate (19) for the case in which A= 1 for 
various times. We note that the solution propagates away 
from the origin and eventually covers the entire domain with 
only a slight decrease in amplitude away from the origin. This 
is in stark contrast to the case of a > 1. 

(c) a < 1. When a < 1, the contour from c — oo/ to c + <xi is 
closed as shown in Fig. 5. For this case, the singularities at 
s= ±i lie along the contours Cl and C4 and are circumvented 
as shown. Thus, we obtain a contribution equal to one half of 
the conventional residue at s = ± i. Our integration around the 
branch points at 5= ±ia vanishes. Consequently, when the 
arguments of both s ± ia are carefully considered, we find that 
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W(X,t): 
2cos(s0 /)exp[-(a2-5§)1 / 4 U!]{s in[(a 2 -^) 1 / 4 \x\] + cos[(a2 -s2

0)
WA Ixl] 

( l -sg)[3(a2-sg)-1 / 4 + 2A] 

A + 2V2( l -a 2 ) 3 / 4 

4[A2 + 4(1 - a2)3 / 2 + 2V2A(1 - a2)3/4] 

X {sin[t-V2(l - a 2 ) 1 / 4 Ixl] - cos(t)exp[- i/2(l - a2)1 / 4 Ixl] ] 

4[A2 + 4(1 - a2)3 / 2 + 2V2A(1 - a2)3/4] 

+ (cos[?-V2( l -a 2 ) 1 / 4 UI] + s in (Oexp[ -V2( l -a 2 ) l / 4 lx l ] ] 

+ / 1 (a , l - ) + /1 ( l + ,oo)+/2 (20) 

in which 1+ and 1 ~ are numbers that are slightly greater than 
or less than one. It is necessary to break I2 into two parts 
because of the singularity at one. 

In Fig. 6 we illustrate (20) for a2 = 0.5 and A = 1 for various 
times. As in the a= 1 case, we observe a wave propagating 
away from the origin; eventually, wave motion envelopes the 
entire domain. 

The Moving, Vibrating Load 

For a load that both moves and vibrates, we invert the 
Fourier-Laplace transform given by (8); this results in 

w(z --ij: s2 + l 
-As2w(0,s) 

•k4-U2k2-2iUks + s2 + oi2 

eikzdk. 

(21) 

To evaluate (21), we apply Jordan's lemma and close the line 
integral along the real axis with an infinite semicircle in the up
per half of the fc-plane if z > 0 or in the lower half of the k-
plane if z < 0 . The integrand of (21) has four simple poles; two 
of them lie in the upper half-plane (let us call them k{ and k2) 
and two of them in the lower half-plane (k3 and kA). 

Although the exact values of the k's must be found 
numerically for given set parameter values a, A, U, and s, we 
can employ the residue theorem to find that 

iv(z,s)=i sgn(z) 
s2 + l 

-As2w(0,s) 

kl-2V2k„-2iUs 

+ i sgn (z) 
s2 + \ 

-As2w(0,s) 

k]-2U2kJ- •2iUs 

ikz 

ik ;Z 

e J (22) 

where (n j ) = (l,2) for z > 0 and («»/') =(3,4) for z < 0 . The 
sign function sgn(z) = 1 for z > 0 and sgn(z) = - 1 for z<0. 

Upon setting 2 = 0 in (22) and solving for w(0,s), we can 
eliminate this quantity from (22). We find that 

w(z,s)=i sgn(z) 
r-t ik„z „ ik-z 
Zje " +Zne J 

Z„Zj + i sgn(z) A(Z„+Z,) s2 + \ 

Z=kl-2U2k„-2iUs 

(23) 

in which 

and an identical expression holds for Zj. Because we no longer 
have analytical expressions for k, we write the inverse of (23) 
in terms of the line integral 

- „ sgn(z) r + » ' ' se5' 
w(z,t)= — 

J C— oo; 2TT s2 + l 

Zje " +Zne J 

Z„Zj + isgn{z) A(Z„+Zj) 
ds. (24) 

For most values of a, U, A, and z, the integrand possess 
singularities at s = ±i and simple poles which satisfy 

Z„Zj + i sgn(z) A ( Z „ + Z , ) = 0 . (25) 

However, for certain values of a, (25) has roots at s = ± i so 
that s= ±i becomes a second-order pole and the inverse will 
grow linearly with time. To determine these a's for given 
values of A and U,s-i was substituted into (25) and the IMSL 
Library subroutine based upon Muller's method of deflation 
(Muller, 1956) was used. The speed at which resonance occurs 
is called the critical speed. 

We began our search for resonant solutions by considering 
the case of A = 0. As Uincreased from zero, a2 decreased from 
one until at U= 1 it became negative. When U was increased 
further, a2 remained negative although it did approach zero. 
These results are in agreement with Mathews (1958) and 
Chonan (1978) who found that resonance only occurs for 
0< U< 1 when the mass of the traveling, vibrating load is ig
nored. Another interpretation of these results is that as the 
velocity increases from zero to one, the resonant driving fre
quency is reduced from (AkwB/m2)x/A to zero. 

When A is very small, a2 again decreases with increasing U 
and becomes negative at U= 1. However, for very large U, a2 

eventually becomes slightly positive. Finalry, when A equals 
approximately 0.5, a2 increases montonically with f/and the 
driving frequency becomes even smaller. 

For large U, this drop in the resonant driving frequency is 
quite substantial. For example, resonance for a stationary, 
vibrating load occurs at a2 = 1.4 if A = 1. This a2 increases to 
approximately 5 for U= 1 and slightly less than 29 for U=2. 
This corresponds to a drop in the resonant driving frequency 
by a factor of 1.9 and 4.5, respectively. 

Although we can determine the resonance condition by ex
amining the denominator of the integrand of (24), the actual 
inversion is computed numerically. For given values of a, U, 
A, and z, the inverse must be computed using a numerical 
scheme given by Albrecht and Honig (1977). The program was 
checked by finding the inverse numerically for U-Q and com
paring it against the results from the previous section. The cor
responding k's were computed from 

kA-4U2k2-8iUks + 4(s2 + a2) = 0 (26) 

for given values of U, s, and a by an IMSL routine which 
solved (26) by a three-step complex algorithm given by Jenkins 
and Traub (1972). 

Calculations were first performed with A = 0 for large times. 
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Fig. 6 Same as Fig. 2, except for a1 = 0.5 
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O 1 5 20 

Fig. 7 Deflection of the railroad track with time as a function of 
distance from the location of the moving, vibrating load. Parameters are 
a2 = 5.54947, A = 2, and U = 0.5. 

Fig. 8 Same as Fig. 7, except for U = 1; a resonant case 

For a fixed a, waves were always found before and behind the uniform before and behind the load. These solutions are very 
moving, vibrating load. For speed below the critical speed, the similar to those found for a stationary, vibrating, massless 
largest amplitude waves occur near the point of forcing, load and are in complete agreement with Mathews (1958) and 
Within a wavelength away from the load, the amplitude Chonin (1978). 
decreases dramatically and the wavelength of these waves are When the speed of the load becomes larger than the critical. 
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Fig. 9 Same as Fig. 7, except for U = 3 

speed, several important changes occur. There are two distinct 
regions. Waves ahead of the load are of smaller wavelength 
and amplitude compared to those behind the load. As the 
velocity increases further, both regions exhibit a modulation 
in the wave amplitudes along with a decrease in the amplitude 
and wavelength witin the envelope. Eventually, at even higher 
velocities, the amplitude of the waves ahead of the load ap
proaches zero while a smooth, uniform wave field is set up 
behind the load. These results are consistent with the findings 
of Chonan (1978) who found the forced oscillations of a mov
ing, harmonic load on an elastically-supported Timoshenko 
beam. Our results are not identical to his results because we 
assumed an Euler beam. 

Similar considerations hold for nonzero A. For a fixed a 
and A, waves are trapped near the load when the speed is 
below the critical velocity (see Fig. 7). These solutions are 
very similar to those found earlier for a stationary, vibrating 
load shown in Fig. 2. 

We illustrate, in Fig. 8, the resonant case A = 2, a2 = 5.54947 
and t/= 1. The secular growth of the wave field is clearly seen. 
At a given time the maximum amplitude is considerably less 
than its stationary counterpart. 

In Fig. 9 we show the solution when we move faster than the 
critical speed. Waves dominate the entire domain with dif
ferent wavelengths ahead and behind the load. This is caused 
by the shorter waves with larger phase speeds running ahead 
of the source, while the longer, slower waves are left behind. 
The maximum amplitude has been greatly reduced because 
some of the wave energy is left behind as the load moves. Ad
ditional calculations revealed that the amplitude is also re
duced by increasing the mass of the load. 

Finally, a particularly interesting solution occurs when a = 1 
and U= 1. Over a large portion of the rail over which the load 
has passed, the rail vibrates as a rigid body even though 
resonance does not occur. When a = l but t /^0, the rigid 
body motion is complicated by a superimposed wave motion. 
This rigid body motion results from the driving frequency 
equaling the natural frequency. 

Conclusions 
We have modeled a railroad track as an elastic beam lying 

on a Winkler foundation to find the vibrations that arise if a 
vibrating, moving load passed over it. Because we treated the 
problem as an initial-value problem, we could follow the 
evolution of the displacement of the beam with time and posi
tion as a function of the mass and driving frequency of the 
load as well as the physical characteristics of the beam. 

For a stationary, vibrating load, the Fourier and Laplace 
transforms were inverted exactly. The nature of the solution 
depends upon the ratio a of the natural frequency of the beam 
(kw/m)yi and the driving frequency co0. For a > 1, the beam 
vibrates but the solutions are trapped near the source of ex
citation. For a< 1 the vibrations propagate to infinity. 

A reason why this problem is of practical concern is the 
prediction of resonance at a = 1 for a stationary, massless load 
given by Timoshenko (1926). Resonance also occurs in our 
problem but now at a larger a. Physically this implies 
resonance at a lower driving frequency. 

When the load moves and vibrates, we inverted the Fourier 
transform exactly but were forced to invert the Laplace 
transform numerically. For a given a and A, resonance occurs 
at a particular critical speed given by (25) with s = i. For speeds 
below this critical speed, waves are trapped near the vibrating 
load. When the load moves faster than the critical speed, 
shorter, faster waves propagate ahead of the excitation while 
the longer, slower waves are left behind. Resonance occurs but 
now both the mass and velocity act to lower the driving fre
quency at which it occurs. A particularly interesting solution 
occurs at a = 1 and U= 1 where a portion of the beam vibrates 
as a rigid body. This is the best approximation to 
Timoshenko's original analysis where he stated that the rail 
would vibrate as a rigid body. 
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Axisymmetric Inclusion in a Half 
Space 
An alternate method of approach for solving the axisymmetric elastic fields in the 
half space with an isotropic spheriodal inclusion is proposed. This new approach in
volves the application of the Hankel transformation method for the solution of 
prismatic dislocation loops and Eshelby's solution for ellipsoidal inclusions. Ex
isting solutions by other methods for the inclusion with pure dilatational misfit in a 
half space are shown to be special cases of the present, more general solution. 

1 Introduction 

The elastic fields caused by an ellipsoidal inclusion with 
thermal expansion stress-free transformation strains 
(eigenstrains) in an isotropic infinite body were investigated by 
Goodier (1937). For more general eigenstrains, solutions were 
obtained by Eshelby (1957, 1959, 1961). By using the Galerkin 
vector, Mindlin and Cheng (1950) obtained the solution of the 
thermoelastic stress field in the semi-infinite solid when a 
uniform dilatational thermal expansion is given inside a 
spherical domain. Mindlin's solution (1953) for Green's func
tion in a half space was used by Seo and Mura (1979) to solve 
the same problem for the domain in the shape of an ellipsoid. 

The method of Hankel transformations, elaborated for 
cylindrically symmetrical problems of the theory of elasticity 
in Sneddon's book (1951), has been used to solve the stress 
field of a circular edge dislocation loop with Burger's vector 
normal to the plane of the loop (prismatic loop) in an un
bounded solid (Kroupa, 1960) and in the half space (Bastecka, 
1964). A more general elastic solution of a dislocation loop in 
a two-phase material has been given by Salamon and Dundurs 
(1971). 

In the present study, Eshelby's method for the ellipsoidal in
clusion and the Hankel transformation method for the 
prismatic loop are used for the analysis of the elastic solution 
of an axisymmetric ellipsoidal inclusion in the half space when 
a uniform axisymmetric eigenstrain is given inside the inclu
sion. This approach provides an alternate way for obtaining a 
more general solution of the stresses in the half space with an 
spheroidal inclusion. Existing solutions are shown to be 
special cases of the present one. 

2 Fundamental Equations 

A semi-infinite domain is defined by x3 > 0 as shown in Fig. 
1. The surface x3 = 0 is free from external tractions. The pres-
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ent problem is to express the elastic field when the eigenstrain, 
ejj, in an axisymmetric spheroidal subdomain, fi, (with 

center at symmetry-axis x3, semi-axes ax=a2, a3, and 
x{=x2=0 and x3=c), of the half space is made up of a 
uniform dilatation 
x3-axis. Then 

3e and an extension @ parallel to the 

e£ = o,y(e + ,3o/3) i , y = l , 2 , 3 , (1) 

where 5,y is the Kronecker delta (the usual summation conven
tion does not apply to any of the expressions in this paper). 

For an inclusion Q centered at x{ = x2 = x3 = 0 and with 
uniform eigenstrain described by equation (1), the stress field 
in an isotropic infinite body outside Q can be obtained by us
ing Eshelby's method (1961). The result is given by 

«8 
•Ihn ,«33 " 

4TT(1 - v) 

+ V / > , 3 3 ) - 2(5,-3 +^3)</>,y] 

2p(l-5n)(l-5J3Mjj 

(1 + i>)ne 

2TT(1 - v) 
(2) 

where the numerical suffixes, i,j= 1, 2, 3, following a comma 
denote differentiation with respect to the Cartesian coor
dinates Xi, x2, x3, respectively; /x and v are the shear modulus 
and Poisson's ratio, respectively; and yj/ and 4> are the bihar-
monic and harmonic potential of attracting matter of unit 
density filling the volume Q, respectively. Equation (2) can be 
transformed into cylindrical coordinates (r,d,z) as follows: 

«8 
4ir(l - v) 

<t}.zz+^,zzz+-
\-2v 

Z / 1 

T*A 
(l + p)lie [<j>r 

2ir(l - v) 

W3 f. . l - 2 v 

&•+*-]• 

[2v4 
4ir(l - v) L — r 

+f{Kz ~—<t>,r —<l>,rz) 
2TT(1 -V) r 

(3) 
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IIP -[*.« 
4TT(1 - c) 

(1 + v)ne 

z<t>,zz-fO<t>.zz + z<t> 

-r,t>,rzz\ 
2TT(1-X) ' " 

(1 + (/)/*« 
- / • < / , 

2TT(1 - v) ~<l>,rZ> arV=°z6=Q, 

where 

f= 
a\ 

a\-a\' 

Equations (3) are obtained with the aid of the relationships 
between the derivatives of the functions 4> and <j> given by 
Eshelby (1962) and the following relationships 

V24> = 0, 

X\4>t2=x24>A, (4) 

and 

xl4>tl+x2<j><2 

x 3 , z 

a 2 ', 

• • X, 

Fig. 1 Spheroidal inclusion I21 with principal half-axes a1 

hall space and its image f!2 

= 32> ^3 in a 

where the letter suffixes following a comma denote differen
tiation with respect to the cylindrical coordinates r, 8, and z. 

For a circular edge dislocation loop with the z-axis (or 
x3-axis) as the axis of symmetry in an unbounded medium, the 
stress field is found by Kroupa (1960) by using Hankel 
transformations. For z > 0 , Kroupa's solution can be written 
as 

fiba 
•^Ai^),zz+zdo'), 

2(1 -v) 

1 - 2 K 
+ - (V),r + — do'),, 

jxba 

"2(1- . ) 
jxba 

"2(1- . ) 

ixba 

[MI0~% 
\~2v 

-(V),r -(VU 

[ ( /o 'U-z^o- 1 ) , (5) 

" 2(1 - v) 

where 

7»=/(m,l;«), 

[z(7o ) , r a ] . ^ = 0-^=0, 

I{m,p;ri)= j f l t"Jm(rt/a)Jp(t)e-a/"dt, 

I" = -ad""1) 
1m u\2m t,zi 

' ( / - 1/;;,--1i),r (/n = 0, l ,2, . . ;« = 

(6) 

1,0,1,2,..), 

and •/„, is the Bessel function of the mt\i order, a is the radius 
of the circular dislocation loop, and b is the Burger's vector 
which is normal to the plane of the loop z = 0. 

For the penny-shape inclusion (al=a2 = a and 03—0) 
without shear and dilatation eigenstrains (penny-shape 
prismatic inclusion), the eigenstrains are e\l=e22 = 0 and 
e33=0. If we reduce equation (3) for the penny-shape 
prismatic inclusion, it is interesting to note the similarity be
tween equations (3) and (5). By putting 

* = Wo1 («3 -0 ) , 

where k = 2-Kba/fi, the elastic solutions of the penny-shape 
prismatic inclusion (equations (3)) and the prismatic loop 
(equations (5)) are identical. This suggests that the method 
used to obtain the stress field of a prismatic loop in the half 
space due to the presence of the free surface can be adapted to 
solve the elastic field caused by an axisymmetrical inclusion in 
the half space with its axis of symmetry normal to the plane of 
the free surface. This approach is believed to be quite 
reasonable since the solution for the axisymmetrical inclusion 
can be applied to the penny-shape inclusion after a tedious 
passage to the limit and the fact that if the inclusion has the 
same elastic moduli as the matrix, the stress field is the same as 
that of a small dislocation loop when both the dislocation loop 
and the inclusion are infinitesimally small (Eshelby, 1961). For 
example, a small inclusion of volume V and an eigenstrain ef3 

in the JC3 direction has the same stress field as that of a 
prismatic interstitial dislocation loop of area A and Burger's 
vector b provided that Ve%3 =Ab. By using the recurrence rela
tions, equation (6), it can be shown that the function /5"1 

satisfies the Laplace equation V 2 / ^ 1 =0 . 

3 Elastic Solutions 

Consider the half space x3 = z > 0 (Fig. 1) with an axisym-
metric inclusion with its center at the point (0,0,c) and its axis 
of symmetry (z-axis) normal to the plane of the free surface 
z = 0. In order that the plane z = 0 be a surface free of external 
tractions, the stress components on this plane must satisfy the 
following boundary conditions 

(a„)z_o = 0 > « ) z = 0 = 0, (8) 

and the equilibrium condition 

, = 0. (9) 

Similar to the work of Bastecka (1964), the stress, ay, in the 
half space, z > 0, outside the axisymmetric ellipsoidal inclusion 
centered at the point (0,0,c) can be expressed as 

°U = aii + (JiJ+(7iJ> (10) 

(7) which satisfies the required boundary conditions, equation 
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(8), the equilibrium condit ion, equation (9), and also con
verges to zero for xx and x2 approaching ±00 and x3 ap
proaching 00. In equation (10), the term a', is the stress caused 
by the axisymmetric inclusion Q, centered at (0,0,c), a" is the 
stress due to the image inclusion fi2 centered at the point 
(0,0, - c), with eigenstrain 

( e J ) " = - ( e J ) ' = - 6 , y ( e + /35/3). (11) 

The solution for the stresses a'j and a'j are obtained by 
translating the origin of coordinates in equation (2) and equa
tion (3) to points (0,0,c) and ( 0 , 0 , - c ) , respectively. The ex
pressions of the Newtonian pptential functions <f>' and 4>u for 
the solutions of a'j and a" can be found in Seo and Mura ' s 
paper (1979). The additional stress o{j in equation (10) is the 
fictitious stress necessary to make the surface of the half space 
free of stresses and it satisfies the boundary conditions 

« ) j = 0 = ° . (12) 

« ) * = 0 = - « + O z=o 

A* 
2TT(1 - v) [cw'+mc^'+w' 

-r<t>%)-2(\ + v)e4>"rz (13) 

where, for z = 0, <t>\m = 4>u
m, 4>[n= ~4>% < ^ « = - # L and 

equation (3) is used to obtain equation (13). Now, in the limit 
when a3 approaches zero, that is, for the penny-shape inclu
sion, we can substitute equation (7) into equation (13) to ob
tain 

K ) z - o = , i f * J - d +f)^r\"fiJiiflOJiiOe-^'dt 
2ir(\ — v) L a3 Jo 

+ - 3 ^ ] " / / , & , / ) / , We-«*dt + JjL-\~fiJ0(PQJl {t)e-«<"dt\ 

(l + y)ue k f°° 
-jr\0

tJ^t)J^e~ dt 
ir(l - v) 

(14) 

where p = r/a. 
For the axisymmetric problem, by the appropriate expres

sion of the elastic displacement as the derivatives of certain 
function <p(r,z) in cylindrical coordinates, the equilibrium and 
Beltrami equations are replaced by a single equation (Sned
don, 1951), 

V V M = 0, (15) 

whose general solution is carried out by the method of integral 
transformations. The function \p is replaced by its Hankel 
transform of zeroth order, 

GU,z)=\~rir,zWir)dr (16) 

and it can be shown that G(f, z) is, in general, given by the ex
pression 

G(f,z) = (A +Bz)e-& + (C+Dz)e&, (17) 

where A, B, C, and D are unknown functions of f which are 
determined from the boundary conditions. The stress com
ponents are expressed by means of the function G(f, z). 

In the present case, we consider the solution to converge to 
zero for z approaching 00, thus we set C-D = 0. In order to 
determine A and B, from the first boundary condition (equa
tion (12)), we obtain the following relationship 

A<*>--Tr-*r> (18) 

where X= 2ptv/(l - 2v) is Lame ' s constant . F rom the relation

ship between the stress components and the function G(f,z), 
we have 

K)z=0=jV(ry,(f'-¥r,- (19) 

where F({) is the Hankel t ransformation of the first order of 
the function (a^z)z=0 and 

F(n=-2(X + fi)t
2B(0. (20) 

By letting t = a$, . and using equations (14) and (18), F(f) 
becomes 

m=-
krf 

2TT(1- I>) 
{(cS-2f)JM) + attJM)\e-

(1 + v)kixt 

ir(l - v) 
JM)e~«. (21) 

This equation is used to calculate the function G which is 
substituted into the expressions for stress a[/ (Sneddon, 1951). 
In the calculation, in addition to the recurrence relations equa
tion (6), the following recurrence (Eason, Noble, and Sned
don, 1955) relation is also used 

f 
I"{m,p- \\n) = {m+p-ri)I"(m,p;n- 1) I"(m-\,p\ri) 

a 
z + c 

+ I"{m,p;ri) (m + n+p>0), 

where 

I"(m,p;n) = \~t* Jm{pf)J„{&-«*+<*<>&, 

(22) 

(23) 

and the transformation relation between two-dimensional har-
monic potential, (70

 l)u, and three-dimensional harmonic 
potential, (<t>)", is 

(</>)" = £ ( V ) 7 / . (24) 

The resulting expressions for the fictitious stresses a[j are 

2TT(1 - v) 
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It can be easily shown that these stress components satisfy the 
equilibrium condition, equation (9), and the compatibility 
equations. Therefore, for points outside 0 , , the stress field 
can be obtained by equations (2), (10), and (25). For points in
side inclusion fi^ the elastic stress a,* is given by 

a?j = Wij-0-*j*) + °ij+°ij, (26) 

where the stress (cr^-a,**) is the uniform stress inside the in
clusion Q, when the medium is infinite and whose solution has 
been given by Mura (1982, equation 11.20). 

For the elastic field in a half space caused by an ellipsoidal 
inclusion (a, = a2) with uniform dilatational eigenstrain only, 
i.e., (3 = 0 equation (25) becomes (in Cartesian coordinates) 

ali = ^{^l) [(1" 2")(6/3 + Sji " m* ~ *'* 
+ 2v5ij<t>%-xi<j>%] (27) 

and the stress field outside Q[ is 

^ = - ^ ^ - [ ^ + ^ - 2 ( l - 2 , ) ( 8 f l 

+ S,, - l)*f£ - 4v f i ^3 + 2JC3*^3 ] . (28) 
Equation (28) is the same as Seo and Mura's result (1979) for 
the elastic field in a half space caused by an ellipsoidal inclu
sion (tfj=tf2) with uniform dilatational eigenstrain. Mindlin 
and Cheng's result (1950) for a sphere with a uniform dilata
tional thermal expansion can also be obtained by taking a3 = a 
and /3 = 0 in equation (25). 

For the elastic field in a half space caused by a penny-shape 
inclusion (a, =a2 = a and a3 — 0) without shear and dilatation 
eigenstrains (penny-shape prismatic inclusion), the 
eigenstrains are ell=eT

2=0 and eT
3=P. Equation (25) 

becomes (in Cartesian coordinates) 

M/3c - i d - 2 , 0 ( 5 , , + « j 3 - m % -
" 2TT(1 - v) 

+ 2vb^%-x34>%3], 

and the stress field for exterior point of Q, is 

JJ3 

(29) 

/*0 
7 4ir(l - v) 

[(x3-c)(*fo-tf&) 

•!)(#„-*!& + 2c0$3) 

- 2ri„(0f33 - 4>% + 2c<f>%) + 2cx^u
m ] (30) 

By substituting equation (7) in equation (30) and expressing 
it in cylindrical coordinates, the same results as given by 
Bastecka (1964) for a circular edge dislocation loop in a half 
space are obtained. 

4 Summary 

The stress field in the half space (z & 0) caused by an axisym-
metric ellipsoidal inclusion Q{ centered at (0,0,c) with 
eigenstrain e,y'=5/,(e + /35;3) is found by the superposition of 
the following three stress fields: (a) the stress field of the in
clusion Q, centered at (0,0,c) with eigenstrain ejj in an infinite 
medium, (b) the stress field of the image inclusion Q2 centered 
at (0,0,-c) with eigenstrain - eJj, and (c) the additional fic
titious stress field that makes all stress fields satisfy the 
equilibrium and boundary conditions. 

The stress field of the inclusion in an infinite medium ob
tained by Eshelby is compared with the stress field of a 
prismatic loop in an infinite medium as obtained by Kroupa. 
A relationship is found between the potential function <$> of the 
inclusion and the integral function IQ1, which involves the 
product of Bessel functions Jm, for the solution of the 
prismatic loop. 

The fictitious stress field is solved first for the two-
dimensional problem by using the Hankel transformation 
method and then it is transformed into the three-dimensional 
case by use of the relationship between </> and 70"'. 

The solution of the elastic field in the half space with ellip
soidal inclusions with uniform dilatational eigenstrains ob
tained by Seo and Mura (1979) has been rearranged into three 
terms corresponding to the stress field of the inclusion Q! in an 
infinite medium centered at (0,0,c) with eigenstrain 5,ye, the 
stress field of the image inclusion Q2 centered at (0,0, - c) with 
eigenstrain - S^e, and the additional fictitious stress field. It 
has also been shown that when al=a2, Seo and Mura's results 
are a special case of the present solution. 
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Stress Distribution in Plane Scarf 
and Butt Joints 
The stress distribution in a plane scarf joint, which may have an arbitrary angle of 
scarf as well as arbitrary elastic parameters for its adherends and adhesive, is ana
lyzed. The analysis is based on the two-dimensional elasticity theory in conjunction 
with the variational principle of complementary energy. Minimizing the energy 
functional leads to a specific optimization problem with two variables for the deter
mination of the stresses. Some typical features of the stress distribution are shown 
by numerical examples. Criteria for uniformly distributed adhesive stresses which 
are of importance in practice are deduced. The butt joint is treated as a special case 
of scarf joints. 

Introduction 

An adhesive-bonded plane scarf joint is one of the most 
common types of specimens employed for various adhesive 
testings, and with the development of new adhesive materials, 
it has also become one of those extensively used structural 
elements in the manufacturing of light structures (Patrick, 
1976). A comprehensive analysis of the stress distribution 
around the joint region and in the adhesive layer of the joint is 
therefore of importance in the application of adhesive joints 
(Goland and Reissner, 1944; Chen and Cheng, 1983a). 

Because of the difficulties in the analysis of scarf joints, 
only a few theoretical studies have appeared in the literature 
since the early work by Lubkin (1957a). Lubkin intended to 
establish the conditions under which a wide or narrow 
adhesive scarf joint can have uniformly distributed adhesive 
stresses. In Lubkin's analysis (1957b) the free-edge stress 
boundary conditions of the joint are neglected, and to some 
extent the stress distribution in the adhesive layer is over
simplified. This unavoidably limits the overall application of 
the analysis. By using some known stress functions in two-
dimensional elasticity theory to represent the stresses in the 
two adherends and to satisfy approximately the conditions of 
equilibrium and compatibility of the adhesive layer, Thein 
Wah (1976a) tried a series of numerical solutions to the 
problem. Wah's numerical data (1976b) exposed the complex
ities in the pattern of the stress distribution for the joint 
region, and hence a few, if any, general conclusions may be 
drawn from his analysis. Besides, the expected stress concen
tration near the free edges of the joint is not fully 
demonstrated. 

In the present analysis, all boundary stress conditions of the 
joint are strictly satisfied and the stress distribution in the joint 
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region is analyzed and demonstrated by numerical examples. 
Through the use of two-dimensional elasticity theory in con-
juntion with the variational theorem of complementary 
energy, a specific optimization problem with two variables is 
derived for the determination of the stresses. The solution may 
then be obtained by some numerical procedures. Numerical 
examples are given to show the influence that the scarf angle 
and the material properties may have on the stress distribu
tion. As a by-product of the present study, Lubkin's criterion 
(1957c) for the uniform stress distribution is reexamined and a 
new criterion presented. 

Formulation of the Problem 

Figure 1 is a schematic diagram of a plane scarf joint where 
the two adherends (seen as two sheet strips) may have unequal 
Young's moduli E\ and E2 and unequal Poisson's ratios vx 
and v2. The thickness of the adhesive layer is t, which is small 
when compared with the width b' of the adherends, or com
pared with the length b of the bonding region {b = b'/zosa). 
Let the Young's modulus and Poisson's ratio for the adhesive 
be Ei and v3, respectively. The joint may have arbitrary scarf 
angle a, and the special case a = 0 (refers to butt joint) is also 
under consideration. The tensile forces are assumed to be ap
plied at some distance from the scarf. The corresponding ten
sile stress is denoted by oa. 

The main problem is the determination of the stress 
distribution in the joint region and this is treated as a problem 
in plane stress. 

Description of Stresses in the Joint 

To fit the geometry of the joint, an oblique rectilinear coor
dinate system oxyx is chosen, with axis x placed at one of the 
bonding surfaces and axis y{ parallel to the tensile forces as 
shown in Fig. 1. For convenience, coordinate _y2 =^i +1 is also 
used occasionally. Figure 1 depicts the definition and sign con
vention for the stress components ax, ay, rxy {rxy = ryx, Boresi 
and Chong, 1987) in this oblique coordinate system, and, as a 
reference, the stress components ox<, ay>, T ' ' associated 
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Fig. 1 Scarf joint, coordinate system, and convention for stress 
components 

with the rectangular coordinate system o'x'y' are expressed 
in the same figure, x' is also measured from the left edge of 
the joint as x{x' =x cosa). The relation between the two sets of 
stress components may be written in matrix form as 

[(J*' , Oy' , TX'y']T=[A][0X, Oy, Txy]T (1) 

in which 

0 0 

[A]--

cosa 

sina tana (cosa)~' 2 tana 

sina 0 1 

and T denotes the transpose of matrix. From equation (1) it 
follows 

and 

where 

[(J*' , ff ' , Tx'y'] = [ax, Oy, TXy][A]T 

[Ox, Oy, Txy]T= [A] ' [(J,,' , Oy' , TX'y']T (2) 

[A]-i = 

cos" 'a , 0 0 

sina tana, cosa, — 2sina 

- tana 0 1 

where [A]~i is the inverse matrix of A. In what follows, the 
oblique components ax, ay, rxy are mainly concerned. It may 
be shown that these oblique components satisfy the same 
equations of equilibrium as those for rectangular components 
of stress: 

ax by 
= 0, 

drr dav 

dx dy 
= 0. (3) 

Let (axl, ayl, rxyl), (ax2, ayl, Txy2), (oxi, ay2, rxyi) be the 
oblique stress components in the upper adherend, the lower 
adherend, and the adhesive, respectively. These stress com
ponents should satisfy equation of equilibrium (3), conditions 
of continuity of stress across the dividing surfaces {yx = 0 and 
y2 = G), and all those boundary stress conditions. In this sec
tion, the possible stress distributions that satisfy all these stress 
conditions are investigated. The satisfaction of compatibility 
conditions is treated in the next section. We start with two 
simplifications that form the basis of the analysis to be 
developed: 

(1) According to the well-known principle of Saint-
Venant, the stress components axl and ax2 in the upper and 
lower adherends of the joint may be considered decaying ex

ponentially with the increasing distance from the bonding sur
faces, i.e., 

axl=al (x)e~'K^y\/b) 

ax2 = a2(x)ex2W) (4) 

where a, (x) and a2 (x) are two unknown functions of x and 
\\ and \2(\\ ,X2 > 0) a r e two unknown decaying exponents yet 
to be determined. 

(2) Since the adhesive layer is rather thin, the stress com
ponent Txy} in this thin layer may be assumed as varying linear
ly with the coordinate y{ (or y2), and this is sufficient to cover 
the possible influence of the scarf angle on the stress patterns 
in the layer (cf., the case of butt joint). Similar assumptions 
were employed in dealing with adhesive-bonded single-lap 
joints (Chen and Cheng, 1983b). 

Based on the first assumption, i.e. (4), making use of the 
equations of equilibrium (3) and also the known boundary 
stress conditions of the joint, it is readily deduced that in the 
upper and lower adherend the other two stress components 
must be 

TC T 1=—o-i ' (*)<rX l 0 , l / 6 ) 

' xyl -

/ b \ 2 

I—J t r f M e - M C ^ + ^ c o s a 

-a{ (x)eW2'b) 

(5) 
M 

_b 

b_ ^ 2 / b \ 2 

<Jy2 = {— J ff2"(x)ex20,2/6> + CT0COS«, (6) 

respectively, in which primes stand for derivatives, i.e. 
a' =do/dx, a" =d2a/dx1. We note that the boundary condi
tions at large distances.^ = oo andj>2 = — °°> 

V i = V 2 = t 7o><Vi= <V2 = 0, v y i 1 x y 2 = 0 

are satisfied. Furthermore, there should be four edge condi
tions on the two sides x = 0 and x = b for each of the two 
unknown functions ax and a2 of x: 

( T l l x = 0 = 0 , CT,'|^=0=0, 0Ux = b = O,(j{lx=b=O, 

ff2lx=0-0, CT2lx=0-0, <J2]x=b-0, ff2|jt = fc-0. (7) 

From (5) and (6), the stress components acting on the two 
bonding surfaces are, therefore, 

j>,=0: Txyi=—-a[(x), 
A i 

uyl • ( Y " ) CTl"^) + aoQ 

b / b \ 2 

y2=0: Txy2=---(7{(x), Oy2=\—J a2"(x) + <r0cosa (8) 

Based on the second assumption and by applying the equa
tions of equilibrium (3) and boundary stress conditions (7) and 
(8), the stress distributions in the adhesive layer can also be 
similarly deduced: 

J'3 = -T[(i) f l lW + 9 f f 2 W 

+ —<r2"(x) 
\2 

+ ( T — ) °2'(*) + ff0cosa (9) 
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where the continuity conditions for stresses across the bonding 
surface y2 = 0 have been considered and satisfied. From equa
tions (8) and (9), the stress continuity condition across the 
bonding surface^) =0 , i.e., 

Applying equation (1) yields 

?i 
K=2r!ol!Iff*" f f"'T-^™1 

"yi \y\ =o, Cv2 =0 ~~ °y\ \y\ =o (10) x [A][oxi, ayl, Txyl]
Tcosadxdyl 

may be written as 

+ (-T—) ^ " M + ff0cosa = ( — ) a"(x) + a0cosa 

or, after integration and applying the edge condition (7), yield 

o2(x)=P-ol(x) (11) 

+ iHX [ f f*'< ,*'T»* i [ '4 m ] 

X [A][ox2, ay2, Txy2]
Tcosadxdy2 

1 r" f +i£rloL [ f f-^'T-3]M]r[53] 

X [^]K3 , ff^3, T^3]
rcosarfxrfv2 (13) 

where 

' - [T(V) + (V) 'MTO + 0 
Relation (11) may be seen as a condition of "constraint" im
posed on ax(x) and a2(x) for satisfying the condition (10). 
Thus, all the stress components in the joint can now be ex
pressed in terms of only one unknown function, al (x), and 
two unknown decaying exponents, \ and X2. 

Variational Method Based on the Principle of Com
plementary Energy 

In the preceding analysis, only equations of equilibrium and 
boundary stress conditions are satisfied. To obtain further 
equations for the determination of alt X,, and X2, use has to 
be made of the compatibility of stresses. In what follows, this 
is done approximately by means of the variational theorem of 
complementary energy (Washizu, 1968), which states that for 
all stresses satisfying the equilibrium conditions in the interior 
of an elastic body and on that part of its boundary surface 
where the surface forces are prescribed, the actual state of the 
stress, i.e., the stresses that satisfy the conditions of com
patibility, is such that the variation of the complementary 
energy of the body vanishes. 

For the present problem, one of plane stress, the expression 
for the complementary energy to be minimized may be written 
as 

y= L - f i r \ J[ffx'/ + al'i-2",Ox'iOy'i + 2(1 + Vi)Tx'/i]dx'idy'i 

in which / represents the length of the adherends (/ has actually 
no effect on the calculation because of the rapid decaying 
terms in the expressions for the stresses in the adherends). 

After substituting expressions (4), (5), (6), and (9) into (13), 
integrating with respect to y{ (or y2), eliminating a2 (x) in the 
integrand by relation (11), and simplifying the results through 
the use of edge conditions (7), we obtain 

1 f' 
V=—E3b

2cosa\ W(au \ , X2)tf£ + constant (14) 
JL JO 

in which 

a1=al/Ei, £=x/b 

W(ou\,\2)=Al(^f)2 

( do \ 
—i-J +A3(dl)

2+2A4ol (15) 

where 

' l ~~ ^ cos^a LV&/2X? V £, / 2X3 3 \X,/ \b/ J,2 / M 2 

!)2 

20 V b ) \ X, X2 / V b J \\ 4 \b / X2 V X, 

x J \ b ) XI 3 \b/ X§ \X, X , / J 

E3\l + v{ ( E3 \ (1 + v2)&
2 ( t \ 2(l + c3)l3

2 
( E3 \ \ + v{ ( E3 \(l + v2W , / t \ 

2 / t 

x§ 

1 . p 

7x'y i 

dx'idy'i (12) 

where 

[B,] 

1 - V; 0 

-Vj \ 0 

0 0 2(1 + Vi) 

( t\W + vJ^(\ 0\ 2 / t \ / l [ty 

-iT)—^\^+x;)+—\Tr+<-x;+T2-) 

+m>*-*)Q ({;^)i~^^Mi) ("XT 
+ JL\ 2 - ( E* V a n 2 a - y i / E3 \ tan2a-y2 

X2 / \El J \\ \E2) XI 

a L E, 2X, E7 2X, V t ) V X, X, / J 
A3 = 
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At = - -cosa m tan2a-

+ 
E-, \ tan2 a — v2 <m (1»2"-">>(v+f)]' (16) 

The two unknown parameters X, and X2 in (14) cannot be 
determined by minimizing the functional W through the direct 
variational procedure, and specific optimization techniques 
should be designed for the case. The steps taken by the authors 
are as follows: 

(1) Carrying out the variation 8 V= 0 under the edge condi
tions (7), or their nondimensional form 

CTi$=o = 0, 

' 1 I { = 1 

day 

dd{ 

~dj 

j = o 
= 0, 

{ = 1 
= 0 (17) 

the variational equation for the a{ which renders the com
plementary energy a minimum (for the given X[ and X2) is ob
tained: 

Ax~W~Al 
d1al 

~dJ2 - + A,a, +y44 = 0. (18) 

This is a fourth-order differential equation with constant 
coefficients. 

(2) The solution of equation (18) may be written as 

the stresses acting on the bonding surfaces can be obtained 
through the use of (8). 

Numerical Examples 

Example (1). Butt joints (a = 0) with parameters b' /t = 20, 
P{ = p2 = p} = 0.25 are considered. To show the influence of the 
different stiffnesses of the two adherends, three combinations 
of adherend stiffness are used in calculation: 

(1) Et/E3= 20, E2/E3=5 
(1) E{/E3= 20, E2/E3 =20 
(1) E{/E3= 20, E2/E3 = 100. 
The two decaying exponents A* and Xf obtained for the pre

sent example are given in Table 1. 
The shear and normal stresses cn, a,2, anl, an2 acting on the 

two bonding surfaces are shown in Fig. 2 and Fig. 3, respec
tively. From Fig. 2 it is seen that the shear stresses all have 
drastic variations in the edge zones of the joint and these 
variations are effected evidently by the different combinations 
of the two adherend stiffnesses. We note that the magnitudes 
of these stresses are manifestly much smaller than those of 
normal stresses. Figure 3 reveals that the normal stresses are 
also changing rapidly (from below the average tensile stress a0 

Table 1 

Ex/E3 

20 
20 
20 

Decaying exponents for example (1) 

E2/E3 

5 
20 

100 

M M 
45.7 4.8 
41.6 41.6 
30.1 103.0 

(19) 

in which ±7, ( /=l ,2) are the characteristic roots of the 
homogeneous solution of equation (18), i.e., 

Alyf-A2yf+AJ = 0. 

We note that kt and 7, depend on the two parameters Xj and 
X2 yet to be determined, and kt may be found from the boun
dary conditions (17). 

(3) Substituting (15) into (14), and integrating the first two 
terms by parts with the aid of (17) yield 

\l AllW]2dl;=Al \' {a*)"d(a*Y =AX W "*f̂  
JO JO JO 

\lA2[W]2dZ=A2 ( ' Wd(af)= -A2\\sJ)"S^. 
JO JO JO 

With the preceding expressions and equation (18), equation 
(14) becomes: 

1 r1 

V=—E3b
2cosa\ A^a\{i, X,, X2)d£ + constant = V{\, X2) 

(20) 

which means that the complementary energy can now be con
sidered as a known function of \{ and X2. 

(4) Searching for the minimum point (X*, Xf) for the com
plementary energy function V(klt X2) (cf. (20)) is a typical 
problem of unconstrained optimization (Wolfe, 1978a). To 
solve the problem, a modified Newton method may be used. 
In the present numerical calculations, the first and second 
derivatives of the function appearing in the iteration pro
cedures of the Newton method are replaced by their difference 
approximations. 

(5) Having found the minimum point (X*, X2), a*(£, Xf, 
X2) together with X* and Xf will determine the stress distribu
tion in the joint through the use of (5), (6), (9), and (11) and 

E , / E 3 = 2 0 , E 2 / E 3 = 5 

Fig. 2 Shear stresses acting on the bonding surfaces for example (1) 
(butt joints with b 'It = 20, x, = 0.25, E^ IE3 = 20) 

E,/E3=20, EZ /E 3=S 

E,/E3=20, Ez /E3= 20 

, . / « • . 

0 

'as 
<W°"o 

i.o 

E, / E 3 * 2 O , E z / E 5 = I O 0 

0.04 • * 7 

E„>4 

Fig. 3 Normal stresses acting on the bonding surfaces for example (1) 
(butt joints with b 'It = 20, v, = 0.25, £ , IE3 = 20) 
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Fig. 4 Shear stresses acting on the bonding surfaces for example (2) 
(scarf joints with b 7f = 20, », = 0.25, E^ = E2) 

to slightly greater than a0) in the narrow regions near the edge 
of the joint but the variations are not so strongly effected by 
the stiffness combinations of the two adherends as in the case 
of shear stresses. Figures 2 and 3 also show that for most parts 
of the bonding surfaces (except the narrow regions near the 
edge of the joint), the distribution of both shear stresses and 
normal stresses can be considered uniform (i.e., an =al2 = 0, 
<r„, =a„2 = a0) and this is true for all three stiffness 
combinations. 

Example (2). Scarf joints with parameters El/E3 = 
E1/El= 20, b'/t = 2Q, vi = v1 = vl = 0.25 but with different 
scarf angles (a= 15 deg, 30 deg, 45 deg) are considered. This is 
an example for scarf joints with two identical adherends. The 
shear and normal stresses acting on the bonding surfaces are 
partly shown in Figs. 4 and 5. Here, some rapid changes for 
these stresses in the edge zones of the joint still exist, and as 
can be expected with the increasing of the scarf angle, on the 
whole, the shear stresses increase and the normal stresses 
decrease. An important fact is still that for the central part of 
the bonding surfaces, the stress distribution can be seen as be
ing uniform (i.e., an -aa = ff0sina cosa, anl =anl = a0cos2a) 
for all three scarf angles. Because of the equal stiffness of the 
two adherends, the two decaying exponents in this example are 
equal, and given in Table 2. 

The data in Table 2 as well as what is given in Table 1 for the 
case El/Ei =E2/E3 =20, a = 0 deg seem to suggest that for a 
scarf joint with two identical adherends, the decaying expo
nent for stresses increases with the increasing scarf angle 
(varying from 0 deg to 45 deg). But things are not necessarily 
so. We should note that in this calculation, the geometrical 
parameter t/b' is kept constant, meaning that the actual 
thickness of the adhesive layer (which is t' = /-cosa; cf., Fig. 
1) is decreasing with the increasing scarf angle. And it must 
also have some influence on the decaying exponents. 

Conditions for Uniformly Distributed Adhesive Stresses 

Lubkin (1957c) has shown, by means of an elementary 
analysis, that the stress distribution in the adhesive layer of a 
scarf joint was uniform for all scarf angles provided its 
adherends had identical elastic properties. He also deduced the 
scarf angle which would result in a uniform stress distribution 
for a joint with two different adherends. Lubkin's conclusions 
(1957d) give some insight into the situation but all the com
plexities in the local stresses near the edge of the joint are ig
nored. Now we are in a position to establish conditions for 
uniform distribution of adhesive stresses in scarf joints. 

Returning to the variational equation (18), it is easy to see 
that the coefficient A4 of the equation plays a key role in the 

0.5 

0.6 -

0.7 -

°"n>/c 

z/°"o 

0.8 -

0.9 - ' • 

0.5 

0.6 Y-

0.7 

:s. 

a_=45_° 

a = 30° 

a= 15° 

S& 

0.1 -M 
/ 

Fig. 5 Normal stresses acting on the bonding surfaces for example (2) 
(scarf joints with b 'It = 20, v, = 0.25, E, = £2) 

Table 2 

a 
15 deg 
30 deg 
40 deg 

Decaying exponents for example (2) 

Xf XJ 
43.7 43.7 
50.1 50.1 
59.6 59.6 

uniformity of stresses. In fact, if A4 = 0, which means equa
tion (18) is always homogeneous, the direct results in steps (2) 
and (3) will be 

ff*(£, Ai, X2) = 0, V= constant 

and the only possible solution for the problem is precisely the 
uniformly distributed stresses as may be seen from equation 
(9) (T xyT, ' =o, Jyi - o0cosa). From the expression for A4 in 
(16), it is seen that ^44 = 0 (for all possible X[ and X2) is 
equivalent to the conditions 

E: 
(tan2a —1»,) = tan2a — v3, 

-(tan2a — v2) = tan2a — c3. (22) 

For a scarf joint with two adherends having different elastic 
properties, (22) has generally no solutions for the scarf angle 
unless it happens that 

(<.-^.)/('-^)-(--^0/('--£-)>• 
and, in this case, 

a = tan~ 
vi-{Ei/El)vl 

\-El/El 

(23) 

is the expected value which results in the uniformly distributed 
adhesive stresses. 

As for a scarf joint with identical adherends, the two condi
tions in (22) become identical, so (23) is generally a solution 
(and is the only solution) for the expected value of the scarf 
angle, provided the quantity under the radical sign is positive. 
For instance, based on the parameters given in example (2), 
the expected scarf angle for uniform adhesive stresses will be 
a = 26.6 deg. This is also justified by the relatively even curves 
for a = 30 deg in Figs. 4 and 5. 

So in a more rigorous sense, Lubkin's conclusion should be 
replaced by the criterion (22) or (23). On the other hand, if the 
term "uniformity" for the adhesive stresses is restricted only 
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in the sense that all these stress components in the thin layer 
are almost independent of the coordinate x along the bonding 
surface (not excluding possible variations in the y direction), 
then the examples given in the last section and some further 
numerical data obtained by the present method seem to sug
gest that in the middle portion of a wide joint the adhesive 
stresses are generally uniform and seldom effected by the stiff
ness combinations of the joint. 
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Plane Punch Indentation of 
Anisotropic Elastic Half Space 
The stress distribution within a planar anisotropic half space is determined for nor
mal or tangential displacements imposed over a small part of the surface. The 
general punch problem is then considered as a combination of these basic solutions. 
Results are presented for the normal, tangential, and rotary indentation of an 
arbitrarily-oriented half space by a flat frictional punch. 

Introduction 
Indentation of a punch into the surface of an elastic half 

space is a fundamental problem for explaining forming and 
contact damage processes. This is a mixed boundary value 
problem where stresses and displacements induced in the half 
space depend on friction at the contact surface. Johnson 
(1985) summarized the solutions of similar planar punch 
problems for isotropic materials. When the half space is 
anisotropic, the stress field is distorted by the effects of 
material orientation and the relative magnitudes of the elastic 
moduli. Lekhnitskii (1981) described solutions for stresses in
duced by line forces on the surface of an anisotropic half space 
two-dimensional Boussinesq and Cerruti problems). These 
solutions were obtained by a method of complex variable 
functions. That technique has also been employed for 
fomulating boundary integral methods that are used when 
tractions act on the boundaries of two-dimensional bodies of 
arbitrary shape (Benjumea and Sikarskie, 1972). In the present 
paper we use a potential function approach to construct solu
tions for planar punch problems in a anisotropic half space 
where there is no slip on the surface of a flat punch. This 
problem was previously investigated by Galin (1961) who 
showed that a coefficient of friction /i = 0.5 is sufficient to pre
vent slip over most of the contact surface. 

Elastic Constants of Anisotropic Materials 

The elastic properties of a homogeneous, linear-elastic, 
anisotropic body in Cartesian x-y-z space can be described by 

21 independent elastic coefficients which relate strains at any 
point to the stresses applied at that point. If the body is sym
metrical about the x-y plane, the number of independent coef
ficients reduces to 13 (Lekhnitskii, 1981, p. 35) 
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where Sy =Sjt. If the body is in a state of plane stress in the x-y 
plane (i.e., az = ryz = rxz = 0), the stress distribution in this 
plane is determined by the constitutive relations 
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However, if the body is in a state of plane strain (i.e., ez = yyz 
= Jxz = °) t h e n Tyz = Txz = 0 and oz = - snox/s33 -

sl6Txy/sn. Consequently, the effective in-plane s„a y'sil 
constitutive relations become 
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The case of plane stress will be considered further for reasons 
of clarity. 

Many anisotropic materials can be considered as or-
thotropic; i.e., they have three mutually perpendicular planes 
of symmetry. The elastic behavior of an orthotropic material 
in the £ - TJ plane of symmetry can be expressed in terms of the 
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Fig. 1 Flat punch attached to an anisotropic half space 

engineering elastic moduli E^, Ev, G?1), and Poisson's ratios 
pin> vrt (w n e re v^=v^E^/Ei). If the material axes £ - i j are 
rotated through an angle a from the reference axes x—y as 
shown in Fig. 1, the compliances are related to the engineering 
elastic constants by (Lekhnitskii, 1981, p. 48) 
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The anisotropy of an orthotropic material in the £ — ij plane 
can be represented by the nondimensional modulus 
parameters 

E = Ei/E„ 

G = 2G s ,(2 + ^ + ^ ) / ( £ s + E , ) 

and the compressibility is indicated by 

v = vUylEJE. = v.JJEjEt. 

(10) 

(11) 

(12) 

If v = 1 the material appears incompressible when loaded 
along its principal axes. An isotropic material can only appear 
incompressible in a plane when loaded in plane strain. 

Stress Functions for a Planar Anisotropic Half Space 

The stress state of the body in the x—y plane can be ex
pressed in terms of the Airy stress function <j> as a function of 
the complex spatial variable z =x + iy. In the absence of body 
forces, the equation for </> which satisfies the constitutive rela
tions (2.2) and the condition of compatibility is given by 
(Green and Zerna, 1968, p. 204) 

d44> 

where i denotes the complex conjugate of z, and 

SM = [•Sll+522-'S66-2s12+'(2s16-2s26)]/4 

S[2 = [su-s22 + i(sl6+s26)]/4 

S\\ = [sn+s22+s66-2sl2]/4 

S\l = [sn+s22 + 2sl2]/4 

C12 _ Oil 
•Jl l — Ol2 

C22 _ c l l 
"J 11 ~ l372-

For half-space problems, it is convenient to define new 
spatial variables f, and f2 by the transformation (Green and 
Zerna, 1968, p. 330) 

'•-"'(-Ti*-) y (14) 

(15) 

where 7, , y2 are defined by 

l 7 l l < l ; I7 2 I<1 (16) 

S227
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3 + 2(Sj| + 2S1D71 - 4SJh + S22 = 0. (17) 

Then the stress ax, ay, rxy and displacement u, v at any point 
(x, y) in the anisotropic half space y > 0 can be expressed in 
terms of the complex potentials/, g as follows (Green and Zer
na, 1968, p. 331) 
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The complex potentials, / and g, can be determined by con
sidering the appropriate loading conditions. 

For the surface loading, the forms of the complex potentials 
on the boundary y = 0 can be simplified by defining new com
plex potentials h and k by (Green and Zerna, 1968, p. 332) 
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Fig. 2 f-plane with a cut on the loaded section 

Writing equations (18) and (19) in terms of h" and k", then 
solving for the stresses ay and rxy gives 

ff, + i V v = | A * ( f 1 ) - A ' ( f 2 ) + 7 , * * ( f2 ) -72* ' ( f i ) ) / (7 i -72) 

+ I 7 i * " ( f i ) - 72 * " ( f 2 ) - 7 i 72 l * ' ( f i ) 

- * " ( f 2 ) ] ) / ( 7 i - 7 2 ) (23) 

a, - /rx, = f h " (f,) - h "(f2) + 7 l k"(f2) - y2k" (f,)} /(7i - 72) 

+ {7iA"(f i ) -72A'(r2)-7i72[*"(f i ) -*"(f2)]) / (7i-72)-
(24) 

At the surface of the half space, y = 0 and ^ = f2 = I=x. Con
sequently, the stresses at the surface can be written directly in 
terms of £"(f) and k"(£). 

*, = [A* (f)+ **(£) +*"(r) + £"(f>]/2 (25) 

rxy = l-h" (t)+h" (b+k" (f) - £ " (f)]/2i (26) 

Similarly, the displacements in the anisotropic half space can 
be written in terms of h' (f) and k' (f) . Since f= x at the sur
face of the half space, the rate of change of the displacement 
along the surface D = dD/dx\y=0 (the "surface displacement 
variation rate") can be related to h" (f) and k" (f) as follows 

D = u + iv=[C{h"($) + C3h"{S) 

-C3Ar"(f)-C2P(f)]/2 

u = [(C,+£,)/!" (n-KCj + C. t f ' t f ) 

- (C 3 + C2)k" (f) - (C 2 + C3]P (f)]/4 

y = [ ( C . - C a ^ ' ^ n + ^ - C . ^ ' ^ f ) 

- (C 3 -C 2 )Ar"(f ) - (C 2 -C 3 )P(f ) ] /4 / 
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These constants depend on the elastic properties of the half 
space as illustrated in Table 1. C, and C2 take on real values 
and the difference ( Q - C2) reflects the compressibility of the 
material when loaded along its principal axes. C3 takes on a 
complex value which depends on the orientation of the prin
cipal directions £, t\ relative to the surface. 

The solution of the complex potentials h and k is simplified 
by extending the definition of the potentials to the entire f-
plane. The potentials can be specified arbitrarily in the region 

l m ( f ) < 0 without affecting the problem. Therefore, we can 
replace the definition of one potential in the half space 
l m ( f ) > 0 in terms of the other potential in the notational 
region Im(f) <0 . As a result, the elastic state of the body can 
be expressed in terms of the two complex functions h and k 
defined over the whole plane. The relationship between these 
complex potentials is chosen so that their derivatives are con
tinuous over the unloaded portion of the surface 
y = \m(t;) =0 . Consequently, they are analytic over the whole 
f-plane with a cut on the load section as shown in Fig. 2. The 
potentials can then be evaluated by complex integration along 
a contour surrounding the cut. 

Defining h and k in the half plane Im(f) < 0 by (Green and 
Zerna, 1968, p. 332), 

h{S)=-k(S) 

k{n=-htt) 

(30) 

(31) 

(32) 

(33) 

it follows that in the half plane Im(f) >0 , 

h(f)=-k(f) 

k(h=-h({). 

Therefore, the stresses at the surface y = 0 can be expressed in 
terms of h" and k" by substituting for h" (?) and A:"(f) in 
(4.14) and (4.15) 

oy = ([A* MV -\h" (x)Y +[k" (x)]+ - [ * ' M l " }/2 

(34) 

rxv = l-[h" (x)]+ +[h" (x)]~ +[k" (x)]+ -Ik" (x)r }/2i 

(35) 
' xy 

where [h(x)]+ denotes lim /i(f) . Similarly, the surface 

displacement variation can be expressed by 

u = ((C, + C3)[/r (*)]++(C 2 + C3)[/!"(x)] ~ 

-(C3 + C2)[k" (x)]+ -(C3 + C0k" (x)]~ }/4 (36) 

v = i (C, - C3)[h "{x)V+(C2~ C3)[h " (x)] -

~(C3-C2)[k" (x)]+-(C3-C0[k" (x)]- J/4/. (37) 

The relationship between the complex potentials h and k is 
determined by the resultant force on the half space. If the 
stresses and rotations vanish at infinity, it can be shown that 

P I / 1 \ 

2TT f 

1 

*'(f)-tTT+°(7-)- (39) 

Therefore a relationship between the complex functions k" 
and h " can be defined in terms of the resultant force due to 
the tractions acting on the half space. 

Normal Tractions (k^ = hx). For a force P = iY which acts 
perpendicular to the surface, equations (38) and (39) are 
satisfied if hl=ki. This particular solution has been obtained 
by Green and Zerna (1968, pp. 341-344). The equations for 
stresses at the surface y = 0 reduce to 

= [ A " i ( * ) ] + - [ A ' i ( * ) ] - (40) 

(41) 

and the rate of change of the normal component of surface 
displacement is given by 

Vi = I [A", (x)]+ + [h ", (x)] ~ J (C, +C2-C3- C3)/4i. (42) 

i ( * ) ] + - [ A " , ( * ) ] " 

rxy = 0 
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If the surface is free of tractions except for the interval 
-a<x<a where the normal component of surface displace
ment is prescribed, 

[^"1(x)]+ + [h"l(x)}~ =Aivl/(Cl+C2~C3-C3),\x\<a 

(43) 

[A"i( j f ) ] + - [A*i(Jf ) ] -=0, 

The solution to the Hilbert problem is 

A ' I ({ • )=• 2 

\x\ >a. 

(44) 

ir(C! + C2-C3- C3)V«2 - r2 

J - 0 

f! {x)\la2-x2 

• < & • — • 

ITTJIF^?-
(45) 

where F is the magnitude of the resultant indentation force. 
As a result of the prescribed normal displacement, there is a 
secondary rate of change in the tangential component of sur
face displacement 

«1 = l[(C1 + C 3 ) - (C 3 + C2)]/ !" l(f) 

+ [(C3 + C 1 ) - (C 2 + C3]A"1(ft)/4. (46) 

Tangential Tractions (k2 = — A2). For a force P=X which 
acts tangential to the surface, equations (38) and (39) are 
satisfied if k2= -h2. Then, the equations for the stresses at 
the surface y = 0 reduce to 

(47) <ry = 0 

[h"2(x)]++[h"2(x)]~}/i (48) 

and the rate of change of the tangential component of surface 
displacement is given by: 

«2 = f [h"i (x)]+ + [h "2 (x)} - ) (C, +C2 + C3 + C3)/4. (49) 

If the surface is free of tractions, expect for the interval 
~a<x<a where the tangential component of surface 
displacement is prescribed, 

t / ! " 2 ( x ) ] + + [ / ! " 2 ( x ) ] - = 4 « 2 / ( C 1 + C 2 + C3 + C3), \x\<a 

(50) 

[h"2(x)]+ ~[h"2{x)]- =0, \x\>a. (51) 

The solution to the Hilbert problem is 

2/ 

h"2(n = TT(CI +C2 + C3 + C3)Vfl2 - f2 

(•" u2(x)^la2-x2 , y f 
(52) 

where .Y is the magnitude of the resultant indentation force. 
As a result of the prescribed tangential displacement, there is a 
secondary rate of change of the normal component of surface 
displacement 

! ;
D

2=([(C1-C3) + (C 3 -C 2 ) ]A" 2 ( r ) 

+ [ (C 3 -C 1 ) + ( C 2 - C 3 ) ] / r 2 ( f ) ) / 4 / . (53) . 

General Punch Problems 

The general problem of indentation by a rigid block is called 
the punch problem. For a given punch without slip on the con
tact surface, the boundary conditions at the surface of the 
halfspace are 

Normal 
tractions 
(h,=ki) 

-[h l]r- -[h l b -

Tangential 
tractions -
(h2=-k2) 

/ \ . / \ 
[Vlh=v(x) [U2]2=-[uill [Vi]3=-[V2]2 ^ 

[h"2]2 

(i) h"=[h'i]i+[h2]2+[h'il3+... and k"=[h'ih-[h2]2+[h'i]j-

Normal 
tractions 
(hi=ki) 

-[h l ]2 -

Tangential 
tractions -
(h2=-k2) 

[U2ll=u(x) [vi]2=-[V2ll [U2]3=-[ui]2 

\ / \ 
[h"2]l [h" 2 ] 3 

(ii) h"=[h2]i+[hi]2+[h2]3+- and k"=-[h2]i+[h2]2-[h2]3+---

Fig. 3 Solution procedure for coupled punch problem; (/) normal and 
(ii) tangential loading 

u = u(x)\ v = v(x), \xi <a (54) 

°v=°; TW=O, \x\>a. 

The solution to this problem can be obtained by superim
posing independent solutions for normal andj[angential trac
tions only. Substituting u= ux + u2 and v=v{ + v2 into (45) 
and (52) we obtain two coupled integral equations which must 
be solved for h ", (f) and h " 2 (£). 

h"At)=- 2 

7 r ( C 1 + C 2 - C 3 - C 3 ) V ^ T 2 

r° \v-v2{h"2)\4ar^xl , 
X , , dx-

h"2(t) = 

(x-t) 

2/ 

27rV«Mr2 (55) 

TT(C, + C2 + C3 + CJsfa2^2 

x " [u-u2(h"Q]^^x~2
dx L iX 

(x-t) 2W« 2 - r2 (56) 

Then the stress and displacement fields can be calculated using 
the potentials 

A " ( r ) = A " 1 ( f ) + / ! " 2 ( f ) a n d f c " ( r ) = A " 1 ( f ) - A " 2 ( f ) . 

An iterative solution can be obtained by initially neglecting 
the tangential tractions under normal loading, and vice versa. 
The resulting secondary surface displacements beneath the 
punch can then be counteracted by superimposing further 
complex functions until the corrections are negligibly small, as 
shown in Fig. 3(/) and 3 ( H ) for normal and tangential 
loading, respectively. 

The magnitudes of the secondary displacements reflect the 
coupling between normal and tangential displacements and 
this depends on the elastic properties of the half space. For ex
ample, when a frictionless flat punch indents as isotropic half 
space under plane-strain conditions, the material at the edge 
of the punch deforms towards its center if the material is com
pressible (effective Poisson's ratio v/(\ -v)<l). But if the 
material is incompressible, the tangential displacement at the 
surface is zero. Many anisotropic composite materials appear 
relatively incompressible because their bulk modulus is large 
compared with their shear moduli. In particular, low-density 
cellular materials are highly compliant in shear because the 
flexural rigidity of the cell walls is small. In this case, the first 
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Fig. 4 Ratio of principal compressive stress to average normal trac
tions for normal indentation; (a) isotropic incompressible, 
(b) anisotropic incompressible, and (c) anisotropic compressible 
materials 
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Fig. 5 Ratio of principal compressive stress to average tangential trac
tions for tangential identation; (a) isotropic incompressible, 
(b) anisotropic incompressible, and (c) anisotropic compressible 
materials 

Table 1 Material properties 

Description 

$ 
G 
V 

a 

c, 
c2 Ci 

(a) 
Isotropic 

Incompressible 
= 1 
1 
1 

-
= 4.00 
= 4.00 
sO.OO 

(b) 
Anisotropic 

Incompressible 

'/* 
1 
1 

45 deg 
5.03 
5.03 

0 .00 - / 1.68 

(c) 
Anisotropic 

Compressible 
!4 
1 
0 

45 deg 
7.53 
2.53 

0 .00 - / 1.68 

approximations given in the previous section are sufficiently 
accurate for most purposes. 

Here we consider the general problem of a flat punch at
tached to the half space, so that u (x) = 0 and v (x) = constant. 
This problem can be considered as a combination of the 
limiting cases of normal, tangential, or rotational resultant 
forces on the punch. These cases will be solved to a second ap
proximation in order to estimate the likely error of the basic 
solution. 

Normal Indentation. Consider a punch applying a normal 
force on the half space. If v(x)=0, the complex potential 
[h(]i is given by 

W ( f ) l i = -
lirV^-J2 (57) 

This causes a secondary surface displacement variation rate 
beneath the punch 

[«,], = {(C1-C2-C3-r-C3)[A-1 (f)]i 

+ (C, -C 2 + C3-C3)[fi"1(fl]1}/4=-
(CX-C2)Y 
47rVaI^x2 (58) 

The tangential displacement is canceled by applying tangential 
tractions on the half space such that [u2]2 = — [W]]). The 
equation for the required complex potential [h%\2 is given by 

/ (C , -C 2 )F 
lhi(S)h = 27r2(C, +C2 + C} + C3)\f, 

i(C,~C2)Y 

p 1 
^ T 2 J-« (x-i -dx 

m _r-a 
2TT2(CI +C2 + C^ + CjjVo2^? m W 

f2 •>-. ( x - 0 

"(-£r)- <5* 
When the magnitude of this secondary complex potential is 
large, it causes a significant normal surface displacement 
variation rate [v2]2. This can be canceled by superimposing 
additional complex potentials [/!fl3, etc., until the secondary 
displacements are negligibly small. 

Contours of principal compressive stress divided by the 
average normal traction are presented in Fig. 4 for the 
material specifications listed in Table 1. Material (a) is almost 
isotropic and incompressible while material (b) is anisotropic 
and incompressible. Here the stress distribution is determined 
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solely by the primary complex function [/;,"(Oh- In contrast, 
material (c) is compressible and the stress distribution is 
altered by the secondary complex function [h2(l)\2. The ef
fect of the secondary displacements is noticeable near the cor
ners of the punch but diffuses rapidly away from the loaded 
surface. 

Tangential Indentation. In the same manner, we consider 
a punch applying a tangential force on the half space. If 
u (x) = 0, the complex potential [h21, is given by 

[ftz"(f)1,= / ^ — a - (60) 

This causes a secondary surface displacement variation rate 
beneath the punch 

[«2]i = { C 1 - C 2 + C3-C3)[A2"(f)]1 

+ ( - C 1 + C 2 + C3-C3)[A2 '(f)]1/4i = 
(C^-CJX 

A-w^Ja2 - x2 
(61) 

The coupling is reflected by the factor ( Q - C2)/2 as before. 
The normal displacement is cancelled by applying fictitious 
tractions on the half space such that [ vi ]2 = - [ v2],. The equa
tion for the required complex potential [h'{\ 2 is given by 

[Af(r>h= ( c l - c y * r . _ j _ 
1 2 — ~ ~ -• la^fi}-a (x-± 2TT2(C, + C2-C3- C3)Va 

(CX-C2)X 

•n 
-rfx 

- l n ( - ^ - ) . . , .... .. (62) 
27r 2 (C i+C 2 -C 3 -C 3 )Va^T 2 - ' • 

Contours of principal compressive stress divided by the 
average tangential traction are presented in Fig. 5 for three 
material specifications. 

Rotary Indentation. We assume that the problem is 
dominate^ by normal tractions. Then if the punch rotates 
through v(x) =e when loaded by a moment M, the complex 
potential [h'{\\ is given by 

wwh 
2e « Va2 

T 
J — a 

-dx 
7T(C, +C2-C3- C ^ V F ^ f 2 J -a (X- f) 

2'e / it \ 
-(1+ . =- (63) 

v V^=72/ 
(C,+C2-C3-C3) 

where the integral is evaluated by replacing it with a contour 
integral around the cut [-a:a]. The moment M i s related to 
the punch rotation by 

( " 2ira2e 
<jvxdx = —— =— (64) 

-a y (C,+C2-C3~C3) 
and the complex potential can be written 

iM / . /f 
[A'tOli (-^br)' (65) 

This causes a secondary surface displacement variation rate 
beneath the punch of 

\ux\x = \{Cx-C2-C3 + C3W{U)\y 

-c2 + c3-

-[(C3-C3) 

+ (C, 

iM 
c3)[h;wh}/4 

nci-c2)x 
2ira2 

Va^ 
(66) 

The tangential displacement is canceled by applying tangential 
tractions on the half space such that [u2]2= - [ux]x. The 
equation for the required complex potential [h{\2 is given by 

M 
[hi'(t)h 

2 - 1 

, , , , gmg^f. 
/ 'SN 1 2 

•' : '• V ' • - . \ \ - • ' . - ' • ' ' • ' • 

2 - 1 

<?rfl 
(b) 

ttpiili,. 

*y 

M 
Fig. 6 Ratio of principal compressive stress to average normal trac
tions for rotary indentation; (a) isotropic incompressible, (b) anisotropic 
incompressible, and (c) anisotropic compressible materials 

[(c3-c3)j;o 
" Va2 - x2 

iM 

X—dx\ 

i r2a2(C,+C2 + C3 + C3) 

7r2«2(C! + C2 + C3 + C ^ V o 2 ^ 2 

Contours of principal compressive stress, divided by the 
average normal traction, are presented in Fig. 6 for three 
material specifications. 

Discussion 

The punch problem in the absence of slip can be considered 
as a superposition of particular solutions for purely normal or 
shear tractions. An iterative method for solving the general 
punch problem is proposed whereby a basic solution is 
modified by higher-order potentials. The basic solution 
reflects the net force on the punch, while the higher-order 
potentials apply corrections near the contact region. In 
general, the magnitude of each succeeding potential compared 
with its predecessor is of the order 
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Fig. 7 Variation of principal compressive stress contours with material 
orientation for £ = 1/4 and « = 0 deg, 30 deg, 60 deg, 90 deg 

I • • • X 

Fig. 8 Variation of principal compressive stress contours for G = 1, 2, 
3,4 

[h"]i+i/ \[h'],I =Of (C 1 -C 2 ) / (C 1 +C 2 + C3 + C3)l 

or O{(C3 - QVC, + C2 + C3 + C3) J (68) 

so that erroneous displacements decrease exponentially with 
each iteration. In particular, the basic solution tends towards 
the true solution as the compressibility of the material 
decreases, the principal axes of the material become aligned 
with the surface and the distance from the punch increases. 

Contours of stress are elongated in the direction of high 
modulus. Figure 7 illustrates the transformation of contours 
of principal compressive stress in an anisotropic material with 
E= 1/4 as it is rotated relative to the surface of the half space. 
The stress distribution is highly asymmetrical when the 
material axes do not coincide with the surface. The shear 
modulus indicates the stiffness of the material at 45 deg to its 
principal axes. Figure 8 shows the expansion of contours of 
principal compressive stress in these directions as the non-
dimensional shear modulus parameter G increases. 

An anisotropic elastic material is likely to have an 
anisotropic failure criterion. Hill (1950) proposed a simple 
yield criterion for orthotropic materials which reduces to von 
Mises' law for vanishing anisotropy. For plane stress this 
criterion reduces to 

(G + H)a(
2 - IHa^ + (F+H)^2 + 2/Vrf,, = 1 (69) 

where F, G, H and N can be calculated from experimental 
results. If, for example, the yield stresses are proportional to 
the moduli in the principal directions, the yield criterion can 
be written as 
(l+E)2 

H ^ — t 

4E2 

(l+2E-2E2 + 2E3+EA) 

4E2 J("r, 

( l+£)2 

^Y2 (70) 

r K 
~* 

a 

Fig. 9 Contours of effective von Mises (left half) and Hill (right half) 
yield stress for £ = 1/4 

where Y is the average yield stress for the principal directions. 
Contours of effective yield stress in an anisotropic half space 
according to the von Mises and Hill criteria are compared in 
Fig. 9. This suggests that the distribution of yielding beneath a 
punch is highly sensitive to the anisotropy of the yield 
criterion. 

References 

Benjumea, L. A., and Sikarskie, D. L. 1972, "On the Solution of Plane, Or
thotropic Elasticity Problems by an Integral Method," ASME JOURNAL OF A P 
PLIED MECHANICS, Vol. 39, pp. 801-808. 

Galin, L. A. 1961, Contact Problems in the Theory of Elasticity, translation 
from Russian, I.N. Sneddon, ed., North Carolina State College, Raleigh, N.C. 

Green, A. E. and Zerna, W., 1968, Theoretical Elasticity, Oxford University 
Press, Oxford, U.K. 

Hill, R., 1950, The Mathematical Theory of Plasticity, Oxford University 
Press, Oxford, U.K. 

Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cam
bridge, U.K. 

Lekhnitski, S. G., 1981, Theory of Elasticity of an Anisotropic Body, Mir 
Publishers, Moscow. 

90/Vol. 57, MARCH 1990 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.244. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Chien H. Wu 
Professor, 

Fellow ASME 

Chao-Hsun Chen 
Graduate Student. 

Department of Civil Engineering, 
Mechanics, and Metallurgy, 

University of Illinois at Chicago, 
Chicago, IL 60680 

A Crack in a Confocal Elliptic 
Inhomogeneity Embedded in an 
Infinite Medium 
A family of confocal ellipses may be characterized by a single parameter, p> I. In 
the limit as p~l, the ellipse degenerates into a straight line of length 2. It tends to a 
circle of infinite radius as p^oo. The geometry of the title problem is fixed by the 
crack (p = l) and the size of an elliptic inhomogeneity (p = p0). Both the in
homogeneity and the infinite medium are assumed to be homogeneous and 
isotropic. Plane and anti-plane solutions associated with remote loading conditions 
are obtained. The solutions depend, among other parameters, on the size of the in
homogeneity p0. Special attention is placed on determining the various limits as 

Po-~l-

1 Introduction 

When a crack is wholly embedded in an inhomogeneity or 
when the crack tips are separately lodged in disjointed in-
homogeneities, differences between the moduli of the in
homogeneity and the matrix material can cause the stress in
tensity factor (SIF) to be greater or less than that prevailing in 
a homogeneous body. With the problem of crack damage in
teraction in mind, the inhomogeneities are taken to be 
vanishingly small and softer than the matrix. This is the range 
in which we place our emphasis, even though the title problem 
is solved for the full ranges of the parameters. 

For a finite crack with tips lodged in vanishingly small tip 
inhomogeneities, the asymptotic limit is the solution for a 
semi-infinite crack lodged in an inhomogeneity of finite size. 
The case of a semi-infinite crack penetrating a circular in
homogeneity was studied by Steif (1987). Noncircular in
homogeneities were considered by Hutchinson (1986). The 
class of problems may be approximated by a simple calcula
tion (Wu, 1988) and accurately solved by a straightforward 
numerical scheme (Wu and Chen, 1989). 

The present problem differs from the previous one in that 
the complete crack is wholly surrounded by the inhomogeneity 
even if the size of the inhomogeneity is let to tend to zero. 
Moreover, the chosen confocal geometry permits a simple 
mathematical formulation so that parametric dependence may 
be fully examined. In particular, the limit for a vanishingly 
small inhomogeneity may be accurately extrapolated from the 
series solution. Ideally, such a limit should be directly deduced 
from a thin-airfoil asymptotic expansion (Van Dyke, 1975). 
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This possibility is being pursued by us. Without the availabil
ity of such a direct asymptotic result, the confocal geometry is 
perhaps the only benchmark problem that can be used for ex
trapolation. This desired limit is successfully deduced in this 
paper. 

Section 2 summarizes the formulation in terms of a complex 
variable. The exact solution for the antiplane shear case is 
presented in Section 3. Explicit asymptotic limits for large and 
small inhomogeneities are extracted from the exact formula. 
Plane problems are dealt with in Section 4. The case of equal 
shear modulus and unequal Poisson's ratio is solved exactly, 
and the general case is presented as a series solution. 

A large number of references on inclusion problems may be 
found in Mura (1982, 1988), but we have not found any 
reference dealing with the consideration of a crack in a 
vanishingly small inclusion. The closest situation is the one 
given by Warren (1983), who considered the edge dislocation 
inside an elliptical inclusion, including vanishingly small inclu
sions. For our purpose, the series approach appears to be most 
expedient. 

Numerical results for the plane problems are presented only 
for plane strain and Mode-I conditions. Parametric 
dependence of SIF on the size of the inhomogeneity is dis
cussed in detail in Section 5 for the range where the in
homogeneity is softer than the matrix. It is conjectured that 
the SIF associated with an inhomogeneity of arbitrary size and 
shape is bounded within a specifically defined region. A 
number of known solutions are shown to satisfy the 
conjecture. 

2 Formulation 

Let (z\ ,z2) be rectangular Cartesian coordinates and 
z — Z\ +iz2 the associated complex variable in the z-plane. A 
crack of length 2 in the z-plane is mapped onto a unit circle in 
a new complex f-plane via the mapping function, Fig. 1, 

z = m({)= - ^ - ( f + - y - ) (1) 
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where f = f, + »'f2 = pe* and p > 1. The image of the circle 
t=t0=Poe"> is the ellipse 

(z , /«) 2 + (z2 /d)2 = l (2) 

where 

« = ^ - ( P 0 + — ) . b= —-{p0 ). 
2 V p0J 2 V . pa / 

(3) 

The infinite z-plane is now conveniently divided into two 
regions: Dx and D2 by the single parameter p0, viz., 

£>,: Kp<p0, D2: p>p0. (4) 

We shall call Dx the inhomogeneity and D2 the matrix. The 
two regions are of different elastic materials characterized by 
shear moduli fia and plane-elasticity constants 

f 3 - 4va plane strain 
xa= 1 (5) 

IJ3 - va)/{\ + va) plane stress 

where va are Poisson's ratios. The infinite plane is loaded at 
infinity by 

Antiplane: Tia = aia as Izl — oo, (6) 

Plane: Tal3 = aal} as kl—oo, (7) 

where 7i} are the stress components. 
For the antiplane problem the displacement u^(zi,z2), 

stresses r3a (Z) ,z2), and resultant force i?3 along an arc may be 
expressed in terms of a single complex function F(z) • We have 

1 
„3= _ (*(f)+$(f)) , 

T 3 l - JT 3 2=M*' ( f ) /m ' ( r ) , 

^3 = - ' - ^ - ( * ( D - * ( 0 ) . 

(8) 

(9) 

(10) 

where * ( f ) = F ( w ( f ) ) and w(f) is the mapping function 
(equation (1)). 

For the plane problem the displacements ua Ui,z2), stresses 
ra^(Zi,z2), and resultant force J?, +iR2=R along an arc may 
be expressed in terms of two complex functions W{z) and 
w(z). We have 

2/x(u1 + /u2) = Kfl(f)- Q'(f)-«(n 

• w(f) - — 
;7? = 0(f) + -=^=^Q ' ( f ) - t - a ) ( f ) , 

(ID 

(12) 
m ' ( f ) 

where «( f ) = W ( w ( D ) and w(f) = w(ro($")). 
The complex functions must be determined for the two 

regions Dx and D2 subjected to the loading conditions, (6) and 
(7), and the continuity conditions along the interface boun
dary characterized by p0. The crack surface is assumed to be 
traction free. The traction-free condition may be integrated 
along the crack to become a resultant-free condition. Similar
ly, traction continuity along the interface may be integrated to 
become a resultant continuity condition. The integrated forms 
of these conditions will be used in the calculations to follow. 

We shall place a subscript a on a complex function to in
dicate its region of definition. For example, Fa (z) and *„ (f) 
are defined for region Da. 

3 Antiplane Shear 

The problem may be most conveniently solved in the f-
plane. The integrated traction-free, integrated traction con
tinuity, displacement continuity, and loading conditions are 

* , ( e * ' ) - * 7 ( e ¥ ) = 0 . 

Mi[*i(i-„)-*i(f0)]=A*2[*2(r0)-*2(r<,)]. 

* . ( f o ) + * 1 ( f O ) = * 2 ( r o ) + * 2 ( f 0 ) . 

$ 2 = $f as f -oo , 

where l0=p0e
w and 

1 1 

2 V-i 
ion)-

The solution is 

Fig. 1 A crack in a confocal elliptic inhomogeneity 
* 1 ( f ) = ^ f + — ( K l f l < p 0 ) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

K3 

Fig. 2 K3 as a function of /ii//»2 
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* 2 ( f ) = * r + [ 0 + P ^ 4 - p 2
o * ] - - ( i r i > P O ) (i9) 

where 

A=2p 2O*I[(P2O + D-
Mi 

M2 
(P2a-D (20) 

The stress intensity factor may be readily determined. It is 
convenient to normalize the SIF Kul by the factor o^Vr, and 
the result is 

v L 'M - K,u 

\ ^ 2 ' ^32VTT 

Ml 

M2 

2P2
0 

P^+l 
1 + 

Ml PS-I 

M2 P\ + ! 

The following limits may be easily obtained 

Mi 

/ i 2 / / i 2 / \ fi2 

K3(o 1_)= 2J^/( 1 +JM 

(21) 

(22) 

(23) 
M2 ' M2 

These two limits are plotted in Fig. 2. The sign of dK3Zdp0 is 
governed by (1 - nlZji2). Thus 

*.('•-*-)!*.(«••-£-)!*.(-. 
_Mi_ 

M2 

if Mi 

M2 

S i . (24) 

It is noted that the bounds are of practical significance for the 
cases where the inhomogeneity is softer than the matrix. 

A very slender inhomogeneity may be defined by p0 = 1 + e 
where e « 1 . The exact result (21) may be used to obtain 

K, 
V M2 ' 

Ml 

M2 
1+e 1 - Mi \ 

M2 ' 
(25) 

provided that e(/ii//i2)—0 a s «~0. It is, therefore, clear that 
such a two-term asymptotic expansion is valid only for the 
cases where the inhomogeneity is either softer or slightly 
harder than the matrix. 

4 Plane Problems 

Since the plane problems cannot be solved exactly, we begin 
by constructing a series solution in the f-plane. The traction-
free condition on the unit circle unables us to introduce the 
stress continuation (England, 1971) 

=- m(\/i) 
«, ( f ) = -Q,( i / i - ) K—^-Q;U). 

(26) 

The function fli(f) is now extended to the region 
lZp0<p<p0, and the traction-free condition on p= 1 is iden
tically satisfied. The conditions (7) are met if 

O 2 ( f ) = Q f + 0 ( - y - ) If I - « . , (27) 

,(f)=«f+0(-i-) I f l -c (28) 

where 

Q= —- (an+a22), oi= —— [ ( f f 2 2 - f f n ) + /2(T12]. (29) 

The integrated form of the traction continuity condition 
along f0 may be obtained from (12), i.e., 

m(t) 

m (to) 

Q1(fe)-o1(4-) + [«(ro)-m(i-)m Ol'(fo) 
- J o 7 L v f o / J m'(X0) 

where (26) has been applied. Continuity in displacements 
along f0 yields 

—f«2Q2(U- ^^r Ql(U-^(f7)]=—[«iOi(f„) 
M? v m'(t„) J Wi <-w't to) 

.0l(f)-[m(U-m(f)]-°§>] (31) 
m'(f0) 

which, after applying (30), may be reduced to 

n,(r0)=7f22(f0)+T* «2(r0)+ -=%o2 '(f0)+w2(f0) 
m'(f0) 

where 

7 = 
(1 + K2)MI 

7*= ( l -
Mi 

M2 

(32) 

(33) 
( l + * l ) M 2 'T-f t , 

are two composite parameters (Dundurs, 1969). We note that 
(30) may be deduced from (31) via the relation 

(30) s [Letting/x,=/t2 = l and/c,=K2= — 1 in (31)]. (34) 

Before proceeding, we shall first consider the special case 

Mi = M 2 -

4.1 Exact Solution for Equal Shear Modulus. For this 
case, the composite parameters defined by (33) become 

1 + K 2 

7=7 0 1+*! 7 = 0 (35) 

and (32) becomes 

0 i ( f o )=7 o 0 2 ( f o ) . (36) 
which serves as an analytic continuation of the two functions 
Q | (f) and fi (f). Making the substitution fi, (f) = f0 Q2 (f), we 
obtain from (30) 

W 2 ( P o / f 0 ) + 
( r p ) ^(p2

o/fo)-7oM(ro)^(p2
o/f0) 

m'(p2
0ZU 

= (70-i)Q2a0)-70o2(f0 /p5) (37) 

where 

A/(f0) = 
m ( f 0 ) - m ( l / f 0 ) 

= _ Pg0>g-I)(f5-Pg) 
^ ( U f0(f?-pj) 

It follows from (37) that the function i / ( f ) defined by 

" ( 7 0 - l ) « 2 ( f ) - 7 A ( f / P 2 ) , ( l f l>P D ) 

(38) 

//(f) = 

o>i(p2o/n + 
m(f) 

m'{(%/{) 
mp2

0/n~y0M(mi(pi/U; 

( l f l < P 0 ) (39) 

is holomorphic in the whole f-plane. Moreover, its properties 
at f = 0 and oo are governed by the right-hand side of (39). The 
complete solution is 

1 . 
flf //(f) = [ - 1 ^ ( 1 - - ^ 

+ [& P2
0+[l+y0(p

2
0-l)]Q]-j- , 

Q2(f)=Qf-[o+ . "f°2 n l 
L 1 + y„(oi — 1) J 

1 

I+70(PS-D-I r 

(40) 

(41) 
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«2 (f) = H(p2
0/t) + y0MWt) «2 (f) 

-[ /w(pS/f) /m'(f)]Q2(f) . (42) 

fii(f)=70fi2(r). ( « ) 
Let us use the factors ff22V7r and cr12V7r to normalize the SIF's 
K, and K„, and write 

K1=Kl/a22-fK, K2=KH/al2^. (44) 

The following explicit results are readily obtained 

v 7 O K P S + 1 ) + 7 O ( P S - 1 ) ] 7 0 ( l - 7 0 ) ( ^ - l ) 1̂1 

- -^-[(K2 - 1)0+4" 
M2

 L Po 
d 

("> + -pr)A« + ^r(K> + " ^ ^ K - 2 
x K o ' Mo fJo 

n I 1 \ n - 2 / 1 \ . 

(54) 

Mi 

2 [ 1 + 7 0 ( P 0 - 1 ) ] 

* * = 

•2[l+y0(p
2

0-\)] a22 ' 

(45) 

7oPo 

l + 7 o ( P 0 - l ) 
There are the following exact limits 

1+K2 

hm K{ and K2=y0= 
P 0 - I l + «i 

"o 

l i m t f 1 = _L ( l + 7 o )_JL (1+7o)_^lL 
2 2 a22 

lim /T2 = 1. 

(46) 

(47) 

(48) 

(49) 

Mi Q 

n (n-2)B„_2+ — Bn-bn + — b„_2 
Po 

*2 2 
M2 Po 

0 

for « = 3 

for n = 5,7,9, 

(55) 

4.2 Series Solution. The complex functions Q,, Q2,
 a n d 

OJ2, together with their regions of definition, admit the follow
ing series representations 

The relations derived from (30) are obtained by the substitu
tion (34), i.e., 

[Letting ^ = n2 = 1 and jq = K2 = - 1 in (53), (54), (55)]. (56) 

The infinite system (53)-(56) are truncated and the resulting 
finite system is inverted numerically. The SIF's 

K,-iKn = 2(*)1/2Q{m (57) 

Qi ( f )= T,Po-"(A^n+anr"), 

oo 

02(f)=Qf+ Y,po+nB„r\ 

00 

«2(f)=«r+ E/°o+"^rn, 

(50) 

(51) 

(52) 

where n = 1,3,5, . . . . The factors p'0~" and p0
+" are included 

for convenience and pose no restrictions on the validity of the 
series representations. They are nevertheless conceived from 
the fact that ua along If I =p0 must be of the order of p0 as 
Po*00-

Substituting (50)-(52) into (31), setting £=p0e
w, and 

equating coefficients of e'"" to zero, we obtain 

_„(,_ J_ )^ + ( / 7 + 2 ) ( i - J_),4„+2-(l + ^)an 

^ ( 1 + 2,!' ojfl» + 2+ — ^ f a " — Bn + 2) 
p~ \ pi(n + 2)/ «, V />i / 

are then normalized in accordance with (44). Values of plane-
strain K{ are plotted in Fig. 3 for the case vx = v2 = 0.2 and 
a,, =0. The numerical results approach to a limit very rapidly 
as p0 — 00. The analytic expression for this limit is determined 
in the next subsection. 

The convergence of the numerical scheme becomes extreme
ly slow as p0 •— 1. For this reason, values of Kx for fixed values 
of ni//i2 are plotted as functions of \/p2

0 in Fig. 4. It is seen 
that all curves tend to finite limits as p0 — 1. The p0 = 1 curve 
indicated in Fig. 3 is extrapolated from Fig. 4. 

4.3 Very Large Inhomogeneity. We have indicated before 
that the factors pl

0
+" built in (50)-(52) are conceived from the 

fact that the displacements ua along If I -p0 must be of the 
order of p0 as p„ —• 00. Thus the series representation may also 
be interpreted as an asymptotic expansion for large p0. In this 
interpretation, however, the four sets of constants must be 
reexpanded in powers of p~- i .e . , 

1 
(A,a,B,b)„ = ( )no+ — ( )„ ,+ . 

Po 
(58) 

M2 Po 

Ml I 
o> -I r- Q 1or n = 1 

M Po 

Substituting (58) into (53)-(56), and equating to zero the coef
ficients of powers of p~ 2 , we obtain an infinite system of in
finitely many equations for the determination of the coeffi
cients ( )„m. The asymptotic limit for the case of a very large 
inhomogeneity is thus governed by the coefficients ( )„0. 

The system governing ( )n0 actually decouples into finite 
systems and the first cluster of equations are 

(53) 
•A,n + 3A 30 ' «10 + 

Mi 

for n = 3,5,7, 

- ( K 1 + ^ 1 + (I-Z)A 

M? I pi 

— K{Am +Al0 — 

M2 

-Aw + 'SAm-a 

Mi 

130 " 

K 2 - ° 1 0 = 

M2 

Bl0 = u, 

Mi 
' 1 0 -

-KiA30 + 

M2 M2 

Al0+Al0-bi0 = 2Q, 

Mi 

( K 2 - 1 ) Q , 

M2 
(Bm-b30) = Q, 

M2 LPo Po 

AM + Bi0-bi0 = 0, 

which may be explicitly solved to yield 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 
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K, 
J.0 

-2 

<» 
g / -

K, 

Fig. 3 K1 as a function of n-\ln2 with p0
 a s a parameter (c1 =^2 = 0.2, 

"11 = "12 = 0 and plane strain) 

e. -
1.9 -
l .B -
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1.5 -
1.4 -

1.3 -
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0.9 -
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~~ 

i i 

0.3 0.4 0.6 

—2 
18 

it; 

19 
| 

.9 
• I 

— .5 
— .3 

0.B i 

p 
1 o 

Fig. 4 K1 as a function of pj"2 with ^ / ^ as a parameter 

K, 

^/H 
Fig. 5 Ki is shown to be bounded by (71); (o°: infinitely large in
homogeneity, - : vanishingly thin inhomogeneity, 0: vanishingly; 
small circular crack-tip inhomogeneity) 
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^ i o = — («2 + 1 ) 0 / ( K I - 1 + 2 - ^ - ) , 

B . 0 = * 3 0 = ( - ^ - - l H ( - ^ - K 2 + l ) , 

-4 io= - - S i o ^ ^ i o - " 

^30 = 0, 6,0 = 2 ( ^ 1 0 - 0 ) . 

In fact, the second cluster of equations yields 

^ 5 0 = °30 = ^ O = *50 = 0 . 

The asymptotic limit for Qj is merely 

, ( f ) - ( > l i o f + f l i o - | r ) + o ( - T ) 

(65) 

Q, 

and 

0, '( l)~(/l1o-fl,o) + o ( — ) . 

(66) 

(67) 

(68) 

Equations (44), (57) and (67)-(68) lead to the explicit asymp
totic limits 

Ky 
Mi 

M2 
( 1 + K 2 ) 

ff22 
1 + 

a22 

1 + 
_Mi_ 

M2 
«2 1+2 

Ml 

M2 

^ ~ - ^ - ( l + K 2 ) / ( l + - ^ - K 2 ) 
M2 ' V /*2 7 

(69) 

(70) 

Equation (69) is in perfect agreement with the numerical 
asymptotic limit given in Fig. 3. 

While we have not been able to find any references dealing 
with cracks in vanishingly thin inhomogeneities, solutions for 
cracks in multiphase regions are many. In particular, the case 
of a crack in a circular inhomogeneity was solved by Erdogan 
and Gupta (1975). The aforementioned p0 — oo limit cor
responds to their result deduced for a very large circular 
inhomogeneity. 

The p0 — 00 limit may be obtained by first calculating the 
uniform stress in an elliptic inhomogeneity. This stress is then 
used as the remote stress to compute the SIF. The authors are 
indebted to one of the reviewers for this comment. 

5 Discussion and a Conjecture 

The plane and antiplane problems associated with a crack in 
a confocal elliptic inhomogeneity embedded in an infinite 
medium is solved in detail. In particular, the dependence of 
the SIF's on the size of the inhomogeneity p0(l <p0 < 00) is ex
amined. The solution for the antiplane problem is exact and 
the result serves as a qualitative indication of the behaviors of 
the solutions to the plane problems which cannot be solved 
exactly. 

For plane problems, the case of equal shear modulus and 
unequal Poison's ratio is also solved exactly. The general case, 
however, is handled by a series solution. For the latter case, 
the asymptotic limit for a very large inhomogeneity (p0 — 00) is 
also explicitly determined. Numerical results are only pro
duced for Mode-I conditions and for vl = v2 = 0.2. 

In all cases, the attending SIF's are shown to be bounded by 
the limits for the large (p0 —00) and small (p0—-1) in
homogeneities. The case of p0 —1 and /x,//x2< 1 is of special 
interest in studying crack-damage interaction. For this reason 
the relevant portion of Fig. 3 is enlarged and reproduced in 
Fig. 5. It is clear that the effect of the inhomogeneity on the 
crack tip is strictly of a shielding nature. Moreover, the exact 

value of the SIF falls in the rather narrow lens-shaped region 
bounded by the p0 — 00 limit, which is explicitly given by (69), 
and the 45 deg line. With this observation we conclude our 
presentation with the following conjecture. 

A Conjecture: Let a crack be surrounded by a doubly-
symmetric inhomogeneity of moduli /^ and vx = v which in 
turn is embedded in an infinite medium of moduli /i2 and 
v2 = v. The inhomogeneity may consist of two disjointed in
homogeneities surrounding the tips. The normalized Mode-I 
SIF is a function of the two composite parameters 

U+«2)Ml 

( l + K l ) / * 2 

Mi 

M2 — 0 - — ) 
+ «! \ /X2 / 

+ K \ U-> / 

and is denoted by ^ ( 7 , 7 * ) . It satisfies 

7<# 1 (7 ,7*)< 
7 ( 7 + 1 - 7 * ) 

2(7 + 7*)(l-27*) 
(71) 

for 0<y = ix1/ii2^i. The right-hand side of (71) is deduced 
from (69) and equalities hold for y = fi1/ix2 = 0 and 1. 

The solution summarized in Fig. 3 apparently satisfies (71) 
and the p0 —1 limit is plotted in Fig. 5 to illustrate the situa
tion. The problem of a crack with tips embedded in vanishing
ly small circular inhomogeneities was solved by Steif (1987). 
The Kx curve is reproduced in Fig. 5 and satisfies (71). 

Finally, for the case of a vanishingly thin inhomogeneity, 
the (circumferential) stress concentration factor at the nose of 
the ellipse would be of practical interest. Let p0 = 1 + e (e—0), 
then the major and minor axes of the ellipse are a= 1 + Vie2 

and b = e. The following explicit results are readily obtained: 

m 2Ar,o-22 
iyj= at = p o - 0 , z2=0, 

T (2 ) : 
I yy ye 

at Zi=po + 0, z 2 = 0 , 

(72) 

(73) 

where Kx is the normalized SIF. The SIF Kt is in general a 
function of p0 and 7, i.e., K^y^g). It is possible to carry out 
a special asymptotic analysis by using 7 as a small parameter 
and show that 

dK^'Po) = 1 . (74) 
^ 7 7 = 0,po = l 

Thus, as 7—O and p 0 -* l , (73) becomes rf) = 2a22/e = 2a22 

(a/b), which is the stress concentration factor at the nose of a 
vanishingly thin elliptic hole. 
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Crack-Path Effect on Material 
Toughness 
The material-toughening mechanism based on the crack-path deflection is studied. 
This investigation is based on a model which consists of a macrocrack {semi-infinite 
crack), with a curvilinear segment at the crack tip, situated in a brittle solid. The ef
fect of material toughening is evaluated by comparison of the remote stress field 
parameters, such as the stress intensity factors (controlled by a loading on a 
macroscale), to effective values of these parameters acting in the vicinity of a crack 
tip (microscale). The effects of the curvilinear crack path are separated into three 
groups: crack-tip direction, crack-tip geometry pattern-shielding, and crack-path 
length change. These effects are analyzed by investigation of selected curvilinear 
crack patterns such as a macrocrack with simple crack-tip kink in the form of a cir
cular arc and a macrocrack with a segment at the crack tip in the form of a 
sinusoidal wave. In conjunction with this investigation, a numerical procedure has 
been developed for the analysis of curvilinear cracks (or a system of cracks) in a 
two-dimensional linear elastic solid. The formulation is based on the solution of a 
system of singular integral equations. This numerical scheme was applied to the 
cases of finite and semi-infinite cracks. 

1 Introduction 

The modeling of material-toughening mechanisms usually is 
based on analysis of crack growth from two points of view: 
crack growth on macroscale, and the crack-tip stress field on 
microscale. On the macroscale, we consider the material to be 
homogeneous and the crack to be rectilinear. The char
acteristics of the applied load are remote stress intensity fac
tors A70, Tfjf and the energy release rate per crack advance G°°. 
These parameters are related to the geometry and loading 
scheme of the specimens or performing parts. The actual stress 
field in the vicinity of the crack tip is distorted due to interac
tion of the crack with the local microstructure; it is 
characterized by local values Ki, Kfi, and G°. The ratio of the 
local values to the applied values describes the degree of local 
shielding (shielding ratio), or if it is higher than one, anti-
shielding. When the crack-tip stress field becomes less intense 
due to distortion of the applied field by microdefects, the 
material exhibits higher resistance to crack growth; this is the 
basic toughening mechanism. There are several toughening 
mechanisms described in the literature which are based on im
plantation of inclusions, local microcracking, or phase 
transformation of material particles. The shielding ratio 
characterizes the toughening only if one assumes that crack 
propagation will remain rectilinear. However, the local stress 
field usually is complex, and consists of two modes of frac-
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ture. The expectation that the crack advancing path will be 
rectilinear is not justifiable. The real crack path usually is cur
vilinear, and this characteristic in itself represents a toughen
ing mechanism. The aim of this investigation is to establish the 
main features of the toughening mechanism associated with a 
curvilinear crack path. 

The asymptotic behavior of the stress field in the vicinity of 
a curved crack tip can be characterized by stress intensity fac
tors as in the case of a straight crack. To prove this it is suffi
cient to consider an exact solution for the arc crack in a 
uniform stress field given by Muskhelishvili, 1963. However, 
the energy release rate per crack advance, G, which can be 
determined as 

G = A[K1
2+KU (1) 

where A is a constant, has been defined for the rectilinear 
crack growth. G is an important fracture mechanics parameter 
and, therefore, it will be used in our analysis. Physical inter
pretation of G in the case of a curvilinear path is limited to an 
infinitesimal crack advance only. The infinitesimal segment of 
a curvilinear arc can be interpreted as a segment of a straight 
line, but the curvature of the infinitesimal arc does not vanish 
with the arc length. Therefore, usefulness of the energy release 
rate in the form (1) is limited if one tries to draw conclusions 
regarding the crack growth path curvature. The interpretation 
of the value of G is limited to potential crack growth in a rec
tilinear direction only. 

The usefulness of the energy release rate is associated with 
the ./-integral introduced by Rice, 1968. The ./-integral is a par
ticular case of the integral given by Eshelby, 1970, 

'-U Wn, 
du 

-T> — 
~~ dx: -

ds. (2) 
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The case i = 1 will correspond to the Rice /-integral for the rec
tilinear crack parallel to an axis xt. In the case of a rectilinear 
crack, J= G, and J is path independent. In the case of a cur
vilinear crack, this integral has to be taken in the local coor
dinate system, which is tangential to the crack tip. With this 
rotation of the coordinate system, the path independence of 
the integral (2) is lost in general terms when the contours of in
tegration are ending on the crack surfaces. To observe this, 
one simply has to note that if n, is not vanishing on the crack 
surface, the term with PFwill not cancel. For the same reason, 
the integral (2) is not path independent for any curvilinear 
crack path in any coordinate system. 

Thus, the actual value of the energy release rate per crack 
advance obtained from the microscale analysis can be totally 
different from the value expected from the data on 
macroscale. Therefore, the finite element techniques based on 
the evaluation of the energy release rate by employing the J-
integral on the contour distant from the crack tip cannot be 
applied to curvilinear crack-path studies. To obtain complete 
data characterizing the local stress field in the case of a cur
vilinear crack path, one has to obtain a complete solution of 
the problem. The method based on the singular integral equa
tions was chosen in this study. 

In the following sections the formulation of the problem, in 
terms of complex variables, is given with the description of the 
numerical scheme dealing with a curvilinear crack path. The 
developed numerical procedure was formulated for the finite 
and semi-infinite cracks. The numerical scheme was evaluated 
on an example which has an exact solution (finite crack in the 
form of a circular arc in uniform stress field). This numerical 
code was used in the analysis of the effects of crack-tip direc
tion change, local crack-path pattern-shielding (studied on the 
analysis of a sinusoidal crack pattern), and the total toughness 
change due to the curvilinear crack path (based on the crack-
path length). 

2 Formulation 

The analysis of the curvilinear crack in this investigation is 
based on a formulation of two-dimensional linear elasticity in 
terms of singular integral equations (Muskhelishvili (1963)). 
The integral equation states a condition of a traction-free 
crack surface when the total stress field in the plane is given as 
a superposition of dislocation array along the crack plus exter
nal (applied) stress field. This approach is widely used in frac
ture mechanics. The current approach is different from the 
standard technique due to curvature of the crack path and due 
to consideration of a semi-infinite crack. Thus, the stress field 
is characterized by analytic potentials </>(z) and \f/(z) resulting 
from the superposition of the applied (known) stress field </>„, 
\pa and, as mentioned previously, the stress field produced by 
the array of dislocations, representing the crack, which is 
given by </>c, \j,c. 

*(z) =*.(«)+*c(z) 

iKz)=iM«) + iM«) 

The stress tensor components in terms of the potentials (3) are 

om + iorfs = <l>' + * ' +ew(z<t>" (z)+V(z)), (4) 

arr-/ffrf = 0 ' - r ^ ' - e 2 ' ' 9 ( z 0 " ( z ) + V''(z)). (5) 

Functions </>c (z) and \j/c (z) are results of the superposition of 
dislocations along the crack line. The dislocation density 
distribution b(s) is an unknown complex valued function, s is 
the position coordinate along the crack surface. It is con
venient to choose s to be a line length of the crack path starting 
at the crack tip. The potentials 4>c

 a n d & m a n integral form 
can be written as 

a r r b(s) 
4>c(z)=^-r\ \ - ^ -

2TTI JL L z — t 

+ <fc(b(s),z,t)\ds, t = tx(s)+ity(s) (6) 

, , , . a r r b(s) ib(s) 
tdz) = - -r-r\ -Tr

im J i L z—t (z—ty 

~^(b(s),z,t)]ds. (7) 

The analytic functions (j>s and \[>s represent regular parts of the 
potentials corresponding to the interaction of the dislocation 
with a defect or the boundary. These functions are analytic in 
the whole elastic region. The point of consideration is z, and t 
is a point on the crack line L corresponding to an integration 
variable 5. Here a is a standard coefficient, a =£74(1 - v2) in 
plain-strain case, and a-E/A in plain-stress case. 

The integral equation for evaluation of the dislocation den
sity is formed by a statement of zero tractions on the crack 
surface; in other words, 

<7M + i<Jrt = 0. (8) 
6 is the angle between the x-axis and the tangent to the crack 
line at any point z on the crack. Substituting in (8) expression 
(4) with (6), (7) one obtains an integral equation which has to 
be satisfied for any z on the crack line. The resulting equation 
can be written in the form 

r» r N(b(s)Ms)) 
To L t(s)-z(v) 

+ P(b(s),b(s),K(s,v)) \ds = R{v). (9) 

Functions N and P in (9) are linear functions of their 
arguments. Function R represents contribution from the ap
plied (remote) stress field given by potentials <j>a and \j/a. 
K(s,v) here is a Fredholm-type kernel of the integral equation 
(9). In reality, functions b(s) and the conjugate to it have dif
ferent Fredholm kernels not shown in (9), explicitly in order to 
emphasize just the essential features of the equation. Impor
tant components of it are functions t (s) and z (v). These func
tions represent the transformation of the integral equation in a 
complex plane into a line integral equation in terms of real 
variables s and v along the crack path L. An important restric
tion on possible crack trajectories is a requirement that 

\t(s)-z(v)\-Q(\s-v\) as (s-v) 0. (10) 
Variables 5 and v are the real variables on the integration 
curve, measured as the curve length starting from the crack 
tip. With condition (10) equation (9) becomes a first-kind 
Cauchy-type singular integral equation and the integral is 
understood in terms of Cauchy principal value. 

The dislocation density function b (s) in the form defined in 
(6)-(7) and, consequently, in the equation (9), does not corre
spond to a standard dislocation density used in fracture 
mechanics. The difference is in the coefficient. In order to use 
the standard definition, ds has to be replaced by dt in equa
tions (6), (7), and (9). This definition was used for the con
venience of the numerical scheme only, and the difference is 
accounted for in determination of the stress intensity factors. 
Essentially, the coefficient dt/ds has been absorbed into the 
unknown dislocation density for computational convenience. 
However, the restriction on the integration path, following 
from the requirements of continuity of the derivative dt/ds, 
remains. Thus, the crack trajectory has to be a smooth curve 
with a continuous derivative. 

The formulation described above has been applied to finite 
and semi-infinite cracks. In the case of the finite crack, the up
per limit in (9) is equal to the crack length. In the case of a 
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Fig. 1 Configuration of a circular arc crack 

semi-infinite crack, the stabilization procedure introduced by 
Rubinstein (1986) has to be applied. In the case of the infinite 
crack the right-hand side of the equation (9) becomes equal to 
zero, and the remote stress field is introduced through the 
asymptotic behavior of the dislocation density. Thus, we seek 
the dislocation density in the form 

b(s) = = K°°\-0(J) 
+ 1 • 

(1 )"i 

2-KS 
(11) 

where K°° is remote (applied) stress intensity factor and func
tion /3(s) is an unknown function bounded on the integration 
interval and 

/3 ( s ) -0 as 5-00. (12) 

The second term in (11) is a stabilization term. The required 
property of this term is its behavior at large s. The form 
chosen here simplifies computations in the vicinity of the 
crack tip and the evaluation of the stress intensity factors, that 
is 

K^ + i^ 

Ka --i(3(0)ei6 (13) 

Here 0° is the angle of the tangential at the crack tip. K with 
superscript 0 corresponds to local values of the stress intensity 
factors for Mode I and Mode II accordingly. 

After substitution of (11) into (9) the equation is mapped 
onto a finite interval, and then the collocation procedure is ap
plied in the form given by Rubinstein (1986) for the semi-
infinite interval and based on the technique introduced by Er-
dogan and Gupta (1972). The cases of the finite crack and 
semi-infinite crack are treated equally after the transformation 
of the semi-infinite interval of integration onto a finite inter
val. However, the difference still remains in the formulation 
of the supplementary condition. The supplementary condition 
for the semi-infinite crack is condition (12) and it is enforced 
in the numerical procedure by employing Lagrange formulas 
for Chebyshev polynomials at the ends of the interval. The 
supplementary condition in the case of the finite crack is the 
condition of a single-valued displacement 

b(s)ds = 0. 

L here is the interval along the crack. 
The collocation scheme uses Gaus-Chebyshev quadrature 

formula and requires the node distribution along the roots of 
Chebyshev polynomials of the first and second kind. In order 
to secure the accuracy of the integration procedure, a 
nonlinear equation 

r*k 
(l + (y'(x))2)»dx=sk (15) 

was solved to establish the relation between node sk and coor
dinates on the trajectory x,y. In the case of a semi-infinite 
crack, equation (15) corresponds to a mapped state. Here sk is 
a value of corresponding Chebyshev root, x° is a coordinate of 
the crack tip, and function y(x) specifies the crack path. 

3 The Circular Arc Crack 

The numerical scheme was evaluated in the case of a circular 
arc crack in the uniform stress field. The analytical solution of 
this problem is given by Muskhelishvili (1963). The potentials 
representing the applied load are (see Fig. 1) 

1 
+ '«=• 

1 
-2/7 (16) 

The exact solution for the stress intensity factors derived from 
the solution given by Muskhelishvili (1963), is 

K=Kl - i K n = — e±w/2VV7?sin0 (C0 + e±ie+2h') (17) 

~ . . „ . , 0 4-cos2Ysin20 
C0 = / sin27 sin2 — + —— — - , 

2 2(3 - cos0) 
here, in the places with ± , the negative sign corresponds to the 
right crack tip and the positive sign corresponds to the left 
crack tip. The expression (17), in the case of the right crack 
tip, is equivalent to one given by Cotterell and Rice (1980). 

The computations were performed for the following values 
of angles 7 and 0 
0 = 0.001 deg, lOdeg, 20deg, . . . , 170 deg, 

7 = 0 deg, .15deg, 30 deg, 45 deg, 60 deg, 75 deg, 90 deg. 

The results of the numerical procedure, when compared with 
an exact expression (17), show excellent agreement. The agree
ment of these two methods is so good that it would be impossi
ble to illustrate the difference graphically. The data were com
pared at both crack tips. The summary of the maximal error is 
given below, where K stands for the right or left crack-tip 
stress intensity factor, depending where the error is greater. 

f \K„ v analytic ' 

\Km .1 
- 1 <0.012 at 0=170 deg, 7 = 45 deg 

(18) 

max largCf?analytic) - arg(iTnumeric) I < 0.17 deg. (19) 

A similar numerical approach has been used for a finite length 
arc crack by Melin (1986a). However, the resulting accuracy 
did not satisfy the author and, therefore, an additional least-
square procedure was invoked by Melin in dealing with this 
problem. In our case, the results show such good agreement 
that no additional procedure was necessary to stabilize the 
scheme. The maximal value of the error given in (18) decreases 
rapidly with decrease of the angle 0. For example, this number 
becomes on the order less than 10"5 for 0= 150 deg. A max
imal value of 0 discussed by Melin (1986) is 80 deg. 

The above data show that this numerical procedure can be 
applied successfully to the analysis of curvilinear cracks, ex
cluding, for the reasons mentioned in the previous section, 
cases with sharp corners and very high curvature. 

(14) 4 Analysis of the Curvilinear Crack Path Trajectory 

During the crack propagation along the curvilinear path, 
the local stress intensity factors may differ significantly from 
the remote value. In relation to that, there are several con
tributing factors to consider. The net result depends on the 
combined effect of local crack tip orientation and the 

• amplitude of the crack path oscillation. The latter creates a 
local geometrical effect such that the crack-tip field becomes 
similar to a field of a small crack in the vicinity of a 
macrocrack. The complete result of these effects will depend 
on each individual aspect and their interaction. It can be sum
marized in evaluating the total effective toughness. To under
stand the significance of each aspect of the curvilinear path, 
these effects are investigated separately. The main effects of 
the crack-path deflection were separated into three groups. 
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Fig. 2 Geometry of a crack with a circular kink 
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Variation of the local parameters versus 0° under Mode I loading 

They are: change in direction, local shape-shielding, and effec
tive toughness. The natural curvilinear crack path takes place 
due to inhomogenuities which alter the local stress field. The 
current analysis considers a curvilinear crack in the 
homogeneous material and does not include these local stress 
field changes. This puts a certain limitation on the applicabili
ty of the effective toughness evaluation. However, the follow
ing results will characterize the effects taking place and will 
give a guideline for the toughness analysis of inhomogeneous 
materials. The results are given as a ratio of the local values of 
stress intensity factors to a remote value corresponding to an 
applied fracture mode. The energy release rate for the in
finitesimal crack advance is determined in the form equivalent 
to rectilinear crack advance. That is 

G°/G°" = [(Kf? + (KYVK" (20) 

K" corresponds to an applied stress intensity factor in Mode I 
or Mode II, respectively. 

4.1 Crack Path Direction. The effect of the crack path 
direction change is analyzed in this section. The semi-infinite 
crack with a smooth circular kink was subjected to Mode I and 
Mode II loadings (see Fig. 2). The results in Figs. 3 and 4 show 
the variations of the local values of the stress intensity factors 
and energy release rate in ratio to the applied (remote) value of 
tffand Kfi for Mode 1 and Mode II, respectively. The results 
are given as functions of an angle between the tangential at the 
crack tip and a parallel to the main part of the crack, angle 0°. 
The radius of the circular arc should not influence results since 
the ratio of this radius to the arc length, which is equal to 6°, is 
the only parameter of the problem. This was used as an addi
tional factor in evaluation of the numerical procedure. The 
computations were performed on the basis of 40 nodes. The 
stability and accuracy of the numerical results were evaluated 
by doubling the number of nodes. 

The analysis of the branched cracks was originally given by 
Lo (1978) where only discrete values of the directional angle 
are given, that is at 0° = 15 deg, 45 deg, 75 deg. Results given 
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Variation of the local parameters versus 0° under Mode II 

in Figs. 3 and 4 are consistent with the data given by Lo 
(1978). The energy release rate and local value of the Mode I 
stress intensity factor decrease with the increase of the direc
tional angle under the Mode I loading condition. The value of 
the local Mode II stress intensity factor increases in this case 
and reaches its maximum at 9° = 78 deg. The negative values 
of Mode I stress mtensity factor correspond to the values of 
the directional angle at which the crack closure will take place. 
The case of the Mode II loading (Fig. 4) shows increases in the 
energy release rate and Mode I stress intensity factor as the 
directional angle increases, up to their maximal positions at 75 
deg and 78 deg, respectively. The Mode II stress intensity fac
tor decreases and becomes zero at 83 deg. The maximal value 
of the energy release rate becomes 60 percent higher than ex
pected from the applied field. This contributes to the instabili
ty of the brittle crack growth under Mode II condition and the 
tendency to change a crack-path direction. The angles of the 
critical situations usually are associated with potential crack-
path direction. These critical directions are: direction of 
maximal energy release, direction of maximal value of Mode I 
stress intensity factor, and direction of zero-value Mode II 
stress intensity factor. Each of these critical directions has a 
good physical argument to be a preferable direction for the 
crack-path extension. However, the difference between these 
directions is significant enough to establish completely dif
ferent trajectories after any finite crack-growth increment. 
The experimental observations suggest the preferable crack 
path to be the direction under which the local stress field will 
correspond to Mode I loading. These observations are sup
ported by D. G. Smith and C. W. Smith (1972), Smith and 
Wiersma (1986). Bazzard et al. (1986), using the Mode II 
loading specimen, observed a tendency of the crack path to 
turn about 70 deg towards the original Mode II crack direc
tion. Similar results were reported by Banks-Sills and Arcan 
(1986). 

In this report we do not propose any particular criteria for 
the crack-path formation; it will be the subject of a follow-up 
paper. The main objective of this investigation is to establish 
the actual change of local stress field parameters due to the 
change in crack-tip direction. 

4.2 Shielding Due to a Local Crack Pattern. The aim of 
the investigaton reported in this section is to evaluate the ef
fect of a nonrectilinear crack path on crack-tip stress field 
parameters. The direction of the crack tip now will remain 
aligned with the main portion of the macrocrack, but the por
tion of the crack in the vicinity of the crack tip will have a cur
vilinear pattern. Specifically, a sinusoidal pattern (21) has 
been chosen as a representation of a typical wavy crack path, 
Fig. 5. The equation of this path is 
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Fig. 6 Local parameters of the crack-tip stress field versus the 
amplitude of the crack path trajectory (sinusoidal pattern) 

y= i 

0.5.4(sin(TT(-^- -0 .5) ) + l) : 0<x<L 

ylsinf-nY— Q.5\\ : L<x<2L + 2kL (21) 

0.5,4 (sin (ir(— 0.5)) - l ) : 2L + 2kL<x<lL + 2kL 

Table 1 Local parameters for a variable number of in
termediate waves in the crack pattern 

A/L = 1.0 _ __ 

in Fig. 6, plays a significant role in material toughening. The 
relatively moderate amplitude may create a significant dif
ference in the actually-acting crack-tip stress intensity factor, 
or energy release rate. As is well known, fatigue cracks, or any 
kind of intergranular fracture, are associated with very wavy 
crack patterns. For the convenience of applications of this 
phenomenon in fracture mechanics, approximate relations are 
given for the local values of Kx and the energy release rate. 

G° = G°°(1.00-0.1682(,4/L)2 + 0.0485 (A/L)1 

-0.0042(A/L)4) (22) 
K°i=Kf(l.00-0.0S16(A/L)2+0.Q225(A/L)3 

- 0.0018 U/L) 4) . (23) 

k = 0, 1, 2, . . . 

where k specifies a number of complete periods between the 
transitional segments, that is, between the segment adjacent to 
the crack tip and the segment adjacent to the main portion of 
the crack. 

As the amplitude-half-wavelength ratio A/L increases, the 
region in the vicinity of the crack tip becomes, in a sense, an 
isolated region, and, therefore, the crack tip acts rather as a 
small crack in the field of a macrocrack. Thus, the shielding 
effect takes place. Two aspects are examined here: The first 
deals with the number of wave periods required for the 
shielding effect to take place, and the second is the evaluation 
of the significance of the shielding. 

The shielding effect, as it was just described, basically 
depends on the last curved segment, so the expected result 
should not depend on the number of intermediate waves. The 
computations were carried out for the ratio A/L = 1 and the 
results are given in Table 1. The values of the local stress inten
sity factor corresponding to Mode I and the energy release rate 
are given here versus the number of intermediate waves. 

As k increases, the dependence of the numerical scheme on the 
number of nodes becomes visible. This is understandable, 
since the larger number of nodes is required to capture the 
features of the curved path and surrounding stress field. This 
minor instability shows in the data given in the Table 1; other
wise, it is clear that the analysis of only one wave (k = 0) is suf
ficient to describe the shielding effect. 

The results of the shielding analysis are plotted in Fig. 6. 
The Mode I remote loading only was considered here. The 
case of Mode II would create a crack closure on the curvilinear 
segments which will become a different type of shielding 
mechanism. 

The shielding effect in the case of Mode I loading, as shown 

Relations (22) and (23) were obtained by using the least-square 
approximation on the data obtained from solution of the in
tegral equation. 

4.3 Determination of Material Toughness in the Case of a 
Curvilinear Crack Path. The important practical aspect of 
the understanding of the effects of curvilinear crack path is the 
evaluation of the effective material toughness. There are 
several ways to interpret the resulting toughness. We are deal
ing with two aspects. On one hand, the crack growth is con
trolled by microstructural parameters, that is, local values of 
the stress intensity factors and energy release rate; on the other 
hand, the experimental measurements determining the 
material toughness are, usually, done on a macroscale. On 
macroscale the crack is assumed to propagate in a rectilinear 
path. Therefore, the length of the crack path is different in 
these two cases. 

The energy release rate will be used as a parameter in the 
toughness analysis. It is better suited for that purpose than the 
stress intensity factor, since the local field always has two 
stress intensity components while the applied stress field may 
correspond to only one. 

Suppose the crack is growing along the curve (21), and it ad
vances on a full cycle, starting from the horizontal position 
and ending in the same position. The total crack-path length 
will be S. On the macroscale, the crack will appear to be ad
vancing horizontally and the crack-path length will be X. In
troduce the integral toughness criterion, which will be based 
on the assumption that the crack is driven by the critical 
energy release rate G° along the path. Thus, the total energy 
released per cycle will be SG°, and on the macroscale, the 
equivalent measurement of energy release per crack advance X 
will be XG~. The resulting relation between the critical values 
on macro and microscales is 
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Fig. 7 Variation of the local value of the energy release rate along the 
crack path, AIL = 2.0, k = 0 

G? = (24) 

The argument against this simple approach is that the assump
tion G° = constant along the crack path does not represent the 
physical situation very well. A typical variation of G° along 
the crack path is shown in Fig. 7. The case corresponding to 
A/L = 2.0 and k = 0, assuming a constant remote load, is given 
in Fig. 7. The energy release rate varies significantly along the 
crack path due to direction change and the local shape-
shielding. The regions with horizontal tangential have highest 
values of G°. Again, as was mentioned previously, this crack 
path is not a typical case for the homogeneous material. To in
clude the variations of the local fracture mechanics parameters 
in the toughness evaluation, introduce an average toughness 
criterion. Consider the average value of the energy release 
rate. 

G° 1 fs \Ga 

= — G°(s)ds = 8 ~ 
S Jo S (25) 

The second equality relates the average value to a remote one 
by following the same logic as in the case discussed above. The 
coefficient 5 was introduced here to maintain a simple rela
tion. The geometry of the crack path enters this relation 
through this coefficient only. Assuming that the average value 
of the energy release rate should reach critical value in order 
for the crack to propagate through the cycle, the remote value 
can be written as 

G°° 

~G°~ °'=-»:G- (26) 

The values of 5 were computed for one cycle of a crack path 
(k = 0) and for several values of the amplitude-half-wave
length ratio. These data are given in Table 2. It is surprising to 
observe that 5 is practically equal to 1.0 for smaller 
amplitudes, and, for the cases considered here, did not rise 
higher than about 1.15. There is no reason to expect that this is 
a general result for any crack path. The values of 5 were com
puted for intermediate positions along the path as well. These 
values fluctuate along the crack path, and only for the 
sinusoidal path at the end do they become so close to unit. 
Thus, for relatively small amplitudes, two methods practically 
give equivalent results. The data in Table 2 show that, for the 
curvilinear crack path, the macrotoughness may appear much 
higher than the local value. In other words, the crack-path 
deflection is an important material-toughening mechanism. 

5 Conclusions and Discussion 

The investigation of the curvilinear crack path demonstrates 
that the geometry of the crack-path trajectory has to be con-

A/L 

0.25 
0.50 
1.00 
1.50 
2.00 
2.50 

&(A/L) 

1.000 
1.002 
1.015 
1.045 
1.088 
1.153 

S(X = 3) 

3.215 
3.744 
5.232 
6.964 
8.798 

10.685 

Gl,/Gm 

0.933 
0.803 
0.582 
0.450 
0.370 
0.324 

sidered in order to be able accurately to evaluate or to predict 
the material toughness. The geometry of the crack-path trajec
tory is as important as other aspects of crack growth on 
microscale. 

This study illustrates several toughening mechanisms 
associated with the curvilinear crack path. They are: local 
crack-tip direction, crack-path oscillation pattern, and the 
length of the curvilinear path. 

The local crack-tip stress field parameters, such as stress in
tensity factors and energy release rate due to the crack ad
vance, are experiencing significant changes during crack-tip 
direction change. The typical characteristic of the dominant 
Mode I crack propagation is higher value of the energy release 
rate due to the crack advance. The presence of the Mode II 
component usually reduces the total energy release rate. 

The wavy crack path forms a shielding mechanism based on 
isolation of the crack-tip region, so that it acts as a microcrack 
in the vicinity of a macrocrack. The examined sinusoidal pat
terns contributed to the reduction from 1.0 to 0.55 of the ratio 
of the acting stress intensity factor to the applied one. The cor
responding ratio of the energy release rate is 0.30. 

The total toughening due to curvilinear path was evaluated 
on the basis of actual crack-path length and compared with 
the crack advance length on macroscale. Results show that for 
relatively small amplitude of the crack-path oscillation, the 
toughening ratio can be taken equal to the ratio of the cor
responding crack-path lengths. This result is applicable to 
crack trajectories which can be approximated by sinusoidal 
curves similar to (21). 

The material microstructure has an important role in 
material toughening through several mechanisms. Many of 
them were widely discussed in the literature. The aim of this 
work was to give a quantitative description of the crack-path 
deflection toughening mechanism. The important practical 
aspect of the curvilinear crack-path formation is the 
mechanics of the crack-path change. This topic was not ad
dressed here; it will be discussed in detail in a follow-up work, 
(Rubinstein, 1988). 
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Fracture Initiation Due to 
Asymmetric Impact Loading of an 
Edge Cracked Plate 
The two-dimensional elastodynamic problem of a semi-infinite plate containing an 
edge crack is considered. Initially, the plate is stress-free and at rest. To simulate 
the asymmetric impact of a projectile on the cracked edge of the plate, a normal 
velocity is suddenly imposed on the boundary of the plate on one side of the edge 
crack. The boundary of the plate and the crack faces are otherwise traction-free. 
Due to the nature of the loading, a combination of transient mode I and mode II 
deformation fields is induced near the crack tip. The corresponding stress intensity 
factor histories are determined exactly by linear superposition of several more readily 
obtainable stress wave propagation solutions, including a fundamental solution 
arising from a particular problem in the dynamic theory of elastic dislocations. The 
stress intensity factor histories are determined for the time interval from initial 
loading until the first wave scattered at the crack tip is reflected at the plate edge 
and returns to the crack tip. In experiments on fracture initiation in a high-strength 
steel based on essentially this specimen and loading configuration, Kalthoff and 
Winkler (1987) reported a fracture grew from the original crack either as a tensile 
crack inclined to the original crack plane or as a straight-ahead shear fracture, 
depending on the intensity of the applied velocity. The observations are considered 
in light of the solution reported here. 

1 Introduction 
An experimental technique has been proposed by Kalthoff 

and Winkler (1987) and Kalthoff (1987) for subjecting edge 
cracks in plate specimens to very high rates of loading that 
result in a crack tip deformation field that is predominantly 
mode II, that is, the in-plane shearing mode. A plate specimen 
with two parallel edge cracks or notches is impacted by a 
cylindrical projectile of diameter equal to the spacing between 
the cracks, as shown schematically in Fig. 1. Upon impact, 
the projectile produces a compressive wave in the part of the 
specimen between the two cracks, and this wave propagates 
toward the crack tips while merely grazing the two crack faces 
that border this part of the specimen. Upon arrival of the wave 
at the crack tips the constraint of the remainder of the specimen 
is encountered, and relatively large shear stress is induced on 
the crack planes ahead of the crack tips resulting in transient 
mode II stress intensity factors. The same idea has been applied 
for the case of a plate with a single edge crack. 

The wave motion in the part of the specimen between the 
cracks upon projectile impact is actually much more compli-
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cated than the foregoing discussion would suggest. A plane 
compressive wave is indeed generated upon impact. Because 
the crack faces are free of traction, cylindrical unloading waves 
immediately begin to propagate outward from the corners 
where the crack faces intersect the impacted edge of the plate. 
The wave front diagram is shown in Fig. 2. These unloading 
waves have two main effects. They tend to erode the strength 
of the compressive plane wave as it propagates along the crack 
faces and they tend to result in outward bulging of the crack 
faces as the intense compression of the plane wave is relieved 
due to the presence of the free surface. These features are 
evident in some early work by Skalak (1957) on longitudinal 

/ / 

/ 
Fig. 1 Experimental configuration introduced by Kalthoff and Winkler 
(1987) for dynamic fracture initiation studies under mixed-mode condi
tions 
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Fig. 2 Pattern of wave fronts generated in the portion of the specimen 
shown in Fig. 1 between the two cracks due to normal impact of the 
projectile 

wave propagation in a plate due to impact loading of the edge. 
The net result of this loading is to induce a transient, mixed-
mode stress intensity factor field at the crack tip. The mode 
II stress intensity factor has a large component due to the main 
compressive wave, but a time-dependent mode I stress intensity 
factor is also generated. In view of the tendency for the crack 
to close that was previously noted, the mode I stress intensity 
factor will likely be negative. 

Data are reported by Kalthoff (1987) for experiments on 
specimens of a high-strength maraging steel. The plate di
mensions were approximately 1 cm x 10 cm x 20 cm, and 
the crack length, crack separation distance, and projectile di
ameter were all about 5 cm. Impact velocities were in the range 
from about 10 m/s to 100 m/s. A particularly interesting fea
ture of the data is that two completely different failure modes 
were observed to occur, depending on the impacting speed of 
the projectile. For the lowest impact velocities, fracture oc
curred in the form of planar crack growth in a direction inclined 
at about 70 deg to the original crack plane. For impact speed 
greater than about 20 m/s, on the other hand, failure occurred 
by the crack-like growth of a shear band in a direction almost 
coincident with the original crack plane. 

The purpose here is to compute the transient mixed-mode 
stress intensity factors through analysis of a boundary value 
problem intended to model the experimental conditions. The 
analysis is based on the assumption of elastic material response; 
study of the influence of crack tip plasticity is underway. 

The particular edge-cracked plate problem to be analyzed 
is shown schematically in Fig. 3. A rectangular x, ^-coordinate 
system is introduced in the plane of the plate, and the plate 
occupies the half plane x > - /. A crack with traction-free 
faces extends normally inward a distance / from the edge of 
the plate. Thus, the crack tip is at the origin of coordinates 
as shown in Fig. 3. The normal stress component a^ vanishes 
on the edge of the plate for y < 0 and a time-dependent normal 
velocity is imposed on the edge of the plate for y > 0. The 
shear traction is assumed to vanish everywhere on the plate 
edge. This boundary condition would be strictly valid if the 
projectile had the same cross-section as the portion of the plate 
being impacted. The influence of the different shapes should 
be small except for points very near to the impacting surfaces. 

To solve the problem, the longitudinal displacement poten
tial <t> and the shear displacement potential \f/ are introduced 
through the Helmholtz decomposition of the displacement vec
tor. The components of displacement in the coordinate direc
tions are derived from the potentials by differentiation 
according to 

Ux=<t>,x+i',y ".>. = </>,.>>-'/',x (1) 
where the familiar comma-subscript notation is used to denote 
partial differentiation. 

Each of these potential functions satisfies a two-dimensional 
wave equation, 

Fig. 3 A schematic representation of the boundary value problem con
sidered here, showing the edge crack of length /and the imposed normal 
velocity imposed asymmetrically on the edge of the plate 

where a = \/cd = -\/p/(\ + 2n) and b = \/cs = Vp/fi are 
the inverse dilatational and shear waves speeds, respectively, 
in terms of the Lame elastic constants X, /x and the mass density 
p. For future reference, c = l/cR is the inverse Rayleigh wave 
speed. 

The stress components can be expressed in terms of the 
displacement potentials by means of Hooke's law for the ma
terial. As already discussed, the portion of the plate edge below 
the crack in Fig. 3 is completely traction-free. On the other 
hand, the portion of the edge above the crack is free of shear 
traction, but the normal speed is imposed beginning at time / 
= 0. Thus, the solution must satisfy the boundary conditions 

axx(-l,y,t) = 0, oxy(-l,y,t) = 0, y<0 

xy(-l,y,t) = Q, y>0 (3) ux(-l,y,t)= j v(r)dr, a 

axx(x,0+,t) = 0, <7,7(x,0V)( = 0, -l<x<0 

where v(t) is prescribed for t> 0. The formulation is com
pleted by specifying zero initial data. Evidently, the stress 
intensity factors will be identically zero until time / = l/cd. 

The boundary value problem formulated in equation (3) is 
linear. Nonetheless, it is sufficiently complex so that direct 
methods of solution are apparently not applicable. By studying 
the features of a sequence of subproblems, however, it will be 
shown that mathematically-exact expressions for the mode I 
and mode II stress intensity factors can be found. The property 
of linearity is exploited by superposition of these solutions in 
a certain way. The Laplace transform is useful in approaching 
some of these problems. The dual transform of the dilatational 
displacement potential 4>(x, y, t) over time t and spatial co
ordinate x is defined by 

4>&,y,s) •• 
-oo Jo 

e~s'<j>{x,y,t)dt dx (4) 

4>,xx+<t>,yy-a2(j)M = 0 *P,xx+i<,yy-b'1tM = Q (2) 

where the transform parameters are defined to be 5 and .?£, 
respectively. The parameter s may be viewed as a sufficiently 
large positive real number in considering transform on x. 

The superposition scheme is outlined in Figs. 4, 5, and 6. 
In Fig. 4, is shown that the asymmetric impact problem can 
be viewed as a superposition of a symmetric impact problem 
(A) and an antisymmetric impact problem (B). If v(t) is the 
imposed normal velocity in the problem of interest, then a 
normal edge velocity of magnitude Vzv(t) is imposed sym
metrically with respect to the crack plane in (A) and antisym
metrically with respect to the crack plane in (B). Thus, solutions 
of these two problems are required. 

Consider the symmetric problem (A). It is shown in Fig. 5 
that this problem can be decomposed into a quarter-plane 
problem (C) and a problem concerned with the motion of 
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Fig. 4 Decomposition of the asymmetric boundary value problem in 
Fig. 1 into a symmetric loading system (A) and an antisymmetric loading 
system (B) 
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Fig. 5 Decomposition of problem (A) into a quarter-plane problem (C) 
and a dynamic dislocation propagation problem (D) 

dislocations emanating from the tip of a crack (D). The basic 
idea is as follows. If the imposed velocity begins to act on the 
edge x = - / of the quarter plane in (C), then a normal dis
placement is induced on the edge y = 0. However, the dis
placement in the ̂ -direction on x > 0, y = 0 for the problem 
of interest (A) is zero. Consequently, the normal displacement 
induced on x > 0, y = 0 for the quarter-plane problem (C) 
is canceled by a distribution of climbing edge dislocations 
emanating from the crack tip in (D) with a net displacement 
distribution on y = 0, x > 0 that exactly negates the normal 
displacement in (C). The use of dynamic dislocation solutions 
in this way was introduced by Freund (1974) in order to obtain 
stress intensity factor solutions for certain problems that are 
not amenable to direct analysis. These solutions have been 
used to interpret experimental data by Ravi-Chandar and 
Knauss (1984) and Kim (1985). A similar superposition scheme 
can be used to solve the antisymmetric loading problem. The 
same general approach has been applied to various problems 
in elastodynamics by Brock (1983) and others. 

Finally, the quarter-plane problem can be solved by the 
superposition shown schematically in Fig. 6. Case (E) is the 

(C) 

V (F) 

' U | | I I J J I > ' — " v 
Fig. 6 Decomposition of the quarter-plane problem (C) into two half-
plane problems, each of which can be solved by standard methods of 
analysis 

problem of a half plane occupying x' = x + I > 0 with the 
surface of the half plane subject to a uniform normal velocity 
Vi v (t). A result of this loading is that a normal stress is induced 
on y = 0 for x' < cdt. This normal stress is then negated by 
considering the problem (F) of a half plane occupying y > 0 
subjected to a surface normal traction equal but opposite to 
that induced on y = 0 in (E). This approach was introduced 
by Wright (1969) and Freund and Phillips (1969) in studies of 
grazing incidence of a stress pulse on a free surface. 

2 Quarter Plane Problem 
In this section, the solution of the quarter-plane problem 

designated as (C) in the preceding discussion is determined. 
The plane-strain deformation of an elastic material occupying 
the region x' > 0, ^ > 0 in the x, j-plane is considered, as 
indicated in Fig. 6. The prime on x is dropped for the devel
opment in this section. Initially, the material is stress-free and 
at rest. At time t = 0, a spatially-uniform normal displacement 
is imposed on the edge x = 0, y > 0 of the quarter plane. 
The shear traction is zero on this edge, and the traction is also 
zero on the other edge x > 0,y — 0. The resulting wave motion 
is a plane wave at x = cdt that carries a unit jump in particle 
displacement in the ^-direction, plus cylindrical dilatational 
and shear waves centered at the corner of the quarter plane 
with their associated headwaves. A Rayleigh wave is also ex
pected on the free surface at x = cRt. 

For purposes of the superposition step indicated in Fig. 5, 
and its counterpart for the case of antisymmetric loading, the 
only feature of the solution of the quarter-plane problem that 
is required is the displacement on the edge y = 0 for all time. 
It is this displacement that must be negated by a distribution 
of moving dislocations in (D). The displacement component 
uy(x, 0, t) will lead to the mode I stress intensity factor, and 
likewise the component ux(x, 0, f) will lead to the mode II 
stress intensity factor. 

The two half-plane problems whose superimposed solutions 
provide the solution for the quarter-plane problem are labelled 
(E) and (F); see Fig. 6 for the case of symmetric loading. In 
(E), a unit step in normal displacement is imposed on the 
surface at time t = 0, and the shear traction on this surface 
is zero. The elementary solution is simply a plane wave prop
agating in the ^-direction behind which ux = 1. This wave 
satisfies the quarter-plane boundary conditions on the edge x 
= 0, y > 0 but the boundary conditions on the other edge 
are violated. The plane wave induces no shear stress axy on 
this surface but it does induce a compressive normal stress 
-\a8(t - x/cd) where 5( ) denotes the Dirac delta function. 
Thus, the solution of the half-plane problem (F) must satisfy 
the boundary conditions 
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oxy(x,0,t) = 0, ayy(x,Q,t) =\ab{t- x/cd). (5) 

In considering the physical dimensions of terms in (5) and of 
other fields in this section, it should be kept in mind that all 
expressions are multiplied by a unit displacement. 

Application of the Laplace transforms defined in (4) to the 
wave equations (2) and the boundary conditions (5) leads to 
the transformed wave potentials for problem (F) given by 

-e/, , X 1 a(b2-2?) 
<t>Fti,y,s) = - -r „••.. g(l)e-™y Re(a)>0 

•;u,.. , X I lata 
Vtt,y,s) = - - - ^ gU)e~^ Re((3)>0 

where a(£) and /3(£) are defined by 

a « ) = (« 2 -? 2 ) ' / l , /3(£) = (62 

and 1 i 
-¥Y' 

(6) 

(7) 

*(€) = - £ + a+t, 

R(!t) = (b2-2py + 4¥at3. (8) 

The superscript F indicates a feature of problem (F). The 
condition Re(a) > 0 is met for all points in the £-plane by 
cutting £-plane along a < lRe(£)l < oo, Im(£) = 0, and 
choosing the branch for which a is a positive real number at 
£ = 0. Similar conditions are imposed on /?. The function R(£) 
is recognized as the Rayleigh wave function, and the only roots 
of R(%) = 0 in the complex plane cut as indicated are at £ = 
± c = ±\/cR. The domain of definition of each of <j>F and 
ij/F is extended from the common strip of convergence of the 
integral transforms - a < Re(£) < a to the entire £-plane, 
cut along the line lRe(£)l > a, Im(£) = 0. Both </>F and j , F 

have simple poles at the zeros of R(t;). Furthermore, 4>F has 
simple poles at £ = ± a, which correspond to the point loads 
on the surface of the half space propagating in opposite di
rections with the dilatational wave speed. Transformed dis
placements for (F) can be obtained from potentials in the form 

uF{H,0,s)=-
X 1 ab2H2£2-b2 + 2aP)g(£) 
fJL S *(£) 

uFa,o,s) = -
X 1 ao?(g)g(£) 

us R{Z) ' 
(9) 

It is noted that the transformed form of uF is similar to uy of 
Lamb's (1904) problem and the transformed form of uF is 
similar to uy of Abou-Sayed et al. (1980), with a weighting 
function g(£). 

The displacement components in physical coordinates can 
be obtained by application of the Laplace transform inversion 
integrals and the Cauchy integral theorem. The displacement 
components for problem (C) are then obtained by superpo
sition of the results from (E) and (F), that is uf = uf + uf. 
The result is 

uc
x (x,0,t) •• 

7T J" V R (£) / 

2c2-fr2 + 2-V(c 2 -a 2 ) (c 2 -6 2 ) 

2KS{C) 

where integration paths are taken on Im(£) — 0". The function 
S(£) is defined in terms of the Rayleigh wave function by 

R(H)=K{c2-?)Stt) (12) 

where K = 2 (b2 - a2). The function S(£) has neither zeros 
nor poles in the cut £-plane and S(£) — 1 as l£ I — oo. With 
reference to Fig. 5, the displacement component w£ in (10) 
must be negated by superposition of dislocations in (D). The 
method to be described in the next section hinges on the ob
servation that u% and w<r are homogeneous functions of x and 
/ of degree zero. 

3 Fundamental Moving Dislocation Solutions 
The next step in the analysis is to determine the crack-tip 

stress intensity factor for a single edge dislocation climbing at 
constant speed out of the crack tip; see problem (D) in Fig. 
5. The body is stress-free and at rest up until the instant that 
the dislocation emerges from the crack tip. A solution to this 
problem that is valid for all time cannot be obtained in the 
presence of the free boundary at x = - /. However, a solution 
can be found for the case of a semi-infinite crack in an oth
erwise unbounded body, and the stress intensity factor histories 
will be identical cases for the two cases for time in the range 
0 < t < 2l/cd. When the dislocation begins to move from the 
crack tip, a Rayleigh wave is initiated on the crack face. This 
surface wave travels at speed cR from the crack tip toward the 
free edge of the plate. The main effect of free surface in this 
case is to reflect the Rayleigh wave back toward the crack tip 
at time t = l/cR. The reflected Rayleigh wave can have a 
significant effect on the stress intensity factor when it arrives 
back at the crack tip. It is expected that the difference in stress 
intensity factor histories for dislocation emission between the 
edge crack problem and the half-plane crack problem will be 
small for time in the range 2l/cd < t < 21/cR. 

Consider plane-strain deformation of an unbounded elastic 
solid containing a half-plane crack whose faces are free of 
traction. The material is initially stress-free and at rest. At 
time t = 0, an elastic dislocation with Burgers vector of mag
nitude 2A in the j'-direction begins to move at constant speed 
v in the positive x-direction from the crack tip. In the termi
nology of elastic dislocation theory, this is an edge dislocation 
climbing in the x-direction. The speed is assumed to be in the 
range 0 < v < cd, though the solution may be obtained by 
the same procedure if the speed exceeds the dilatational wave 
speed of the material. 

For the case of mode I, the deformation is symmetric with 
respect to the plane y = 0. Thus, a solution is sought for - oo 
< x < o o , o < > ' < oo, and 0 < t < oo subject to the boundary 
conditions 

oyy(x,0,t)=o+(x,t) 

axy(x,0,t)=Q 

uy(x,0,t)=u__ (x,t)+AH(vt-x) 

(13) 

ax<t<bx 

ZagWdZ 

g(c)H(t-cx) 

(10) 

bx<t <oo 

and 

r, „ , ^ab2 [,/x / 2a \ 
uC(x,0,t)= Im( ^ = ) 

V- T •> \R(H)yJa2-H2/ 
d£ ax<t<o° 

(11) 

where a+ is the unknown normal stress distribution on the 
plane y = 0 for x > 0, and o+ = 0 for x < 0. Likewise, «_ 
is the unknown normal displacement distribution on y = 0 
for x < 0, and «„ = 0 for x > 0. 

Following the procedure introduced by Freund (1974), the 
Wiener-Hopf equation for this case is 
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-b2a(k) 
£+($) = £/_(*) + (14) 

where E+ and C/_ are the double Laplace transforms of a+ 

and u_, respectively, and d = l/v. Application of the fac
torization procedure of the Wiener-Hopf method leads to the 
solution for the double transform of a+ in the form 

. AfXK 1 

where 

and 

" + w b2 (H + d)F+(Z)F+(d) 

(c + f)S+(f) 
F+(k)- .,. 

S±(f)=exp[-i{*tan-« 
V i a l 1/31" 
_(2r,2-b2)\ 

d-q 

The transform inversion leads to the expression for a. 
physical domain as 

(15) 

(16) 

(17) 

in the 

o+(x,t) = ImE 
TTX 

:*(-H H(t-ax). (18) 

The stress intensity factor history for mode I due to the dis
location moving at speed v, say k,(t;v), may be deduced from 
the asymptiotic behavior of £+(£) as £ — oo, with the result 

k,(t;v) = 
JJ.K 1 

7
+ (d)^ft 

(A = l ) . (19) 

The fact that a+ (x, t) is a homogeneous function of its ar
guments of order - 1 is evident in (18). Furthermore, the 
dependence of the stress intensity factor on the dislocation 
velocity v has been indicated explicitly in (19). These obser
vations are important in calculating the transient stress inten
sity factor K,{t) for the crack problem (A). Recall that this 
step requires the superposition of dislocations that reproduces 
a normal displacement that is exactly equal but opposite to 
the normal displacement uy(x, 0, t) of the quarter-plane prob
lem (C); see Fig. 5. 

The case of mode II can be handled in an analogous way. 
The direction of Burgers vector is the negative x-direction, 
rather than the positives-direction as in mode I. In addition, 
the normal stress ayy vanished on y = 0 in the mode II equiv
alent of problem (D) instead of the component axy in mode I. 
Suppose that r+ (x, i) is the unknown shear stress on y = 0, 
x > 0 in this case. Without repeating the details, it can be 
shown that 

r+{x,t) = 

where 

1 AUK 
Im 

1 

•KX b2 UZ + d)G+(l;)G+(d) £ =-t/x+i0 

G+(Z)-
(c + £)S+(g) 

0 + ( « ) 
The fundamental stress intensity factor solution is 

H(t-ax) 

(20) 

(21) 

k„(t;v)--
'2 flK 

h(d)\Tt 
( A = l ) . (22) 

The fundamental stress intensity factor solutions (19) and (22) 
will be used in the next section to construct the full mode I 
and mode II stress intensity factor histories. 

4 Mixed-Mode Stress Intensity Factors 
In the preceding section, the stress intensity factor due to 

the motion of a dislocation away from the tip of the crack at 
constant speed was considered. Suppose now that a continuous 
distribution of dislocations is emitted from the crack tip, each 
moving with a different constant speed. Furthermore, suppose 
that the time of emission and the amplitude of the Burgers 
displacement both depend on the speed of the dislocation. For 
any continuous variation of the amplitude, say w(v), and the 
time of emission, say t0(v) with speed v, the continuous dis
tribution represents a displacement distribution that is a ho
mogeneous function of degree zero of position and time. From 
(19) or (22), the stress intensity factor resulting from this dis
location distribution is 

f"2 dw(v) , (23) 

where vx and v2 are appropriate limits on the actual range of 
speed. 

In the present case, the distribution of climbing edge dis
locations giving rise to an opening displacement across the 
plane^ = 0 results in the mode I stress intensity factor. If the 
boundary loading acts at time t = 0 and at place x = -I, 
then the time at which the displacement level with speed x/t 
arrives at*= 0is?o(y) = (1 - v/cd)l/v. The first displacement 
level to arrive at x = 0 does so with speed cd, and the range 
of speeds of all displacement levels involved at time t is /// < 
v < cd. Therefore, the mode I stress intensity factor resulting 
from negation of the displacement distribution uy, and the 
corresponding mode II stress intensity factor resulting from 
negation of ux, are 

K,(t) = 

K„(t): 

a 
k,(t-t0\h) 

duy(h) 

dh 
dh 

{ h* 

(t-
duJh) 

(24) 

(25) 

where h* = t/l and the inverse speed h = l/v has been used 
as the integration variable for convenience. As indicated in 
Fig. 4, the solution for the case of a unit boundary condition 
is obtained by superposition of two fundamental solutions, 
each with half-unit boundary conditions. Thus, the results of 
Section 2 must be multiplied by one-half prior to superposition. 
This is accomplished by uy in (24) with «jr/2 from (11). The 
integral expression for K, can be evaluated by using the fun
damental formula for k,(t; v) in (19) and the explicit expression 
for the displacement u^ given in (11). The procedure is de
scribed by Freund (1974), and only the result is included here, 
that is, 

K,{t) = 
X_ 

2-KI 

K f** 

*1" (h + a 

2a2(2h2-b2) 
P(h)dh 

(h + a)\l (h-a()h*-h) 

2a a 2a2\Jc-a 

S+(a)yJh* + ac + a S _ (c)\l c - h* (c2 - a2) 

lYa a 

S+(a)\lh* + a (c + a> 

a<h*<b 

b<h*<c (26) 

c<h*<3a 
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Fig. 7 The mode I stress intensity factor for the case of impulsive 
imposed velocity v(t) = 6(f), normalized by E/[2(1 - v2)\[^l\, versus 
normalized time 

The history of Kt is square root singular at t/l = c, but a 
nonzero, finite value is obtained at / / / = a from the integration. 
Following a similar process, Kn is obtained as 

fe 
>> 

CO 

O 

Mode II 

Impuls ive loading 

Normalized Time c t/l 

Fig. 8 The mode II stress intensity factor corresponding to the result 
in Fig. 8 

For example, suppose that the velocity is a step function v(t) 
= VoH(t), which is essentially the loading condition used by 
Kalthoff (1987). The resulting values of 3Z,(t) and X„{t) 
obtained according to (28) are presented in Fig. 9 and Fig. 10. 

Kn{t) = 
2TT/ 

7T J " 

IT J" 

ba2h\jb-h 

\j (h2-a2)(h*~h) 
P(h)dh 

The normalizing factor here is Ev0 \J I/-K/[2C^{ - v2)]. 

a<h* <b 

Aa2h\jb-h 

V' (h2-a2)(h*-h) 

K_ fft 4a2hyjb-h 

•K J" 

P(h)dh 

P{h)dh 

b<h*<c 

(27) 

V' (h2-a2){h*-h) 

2a2c 2c2 -b2- 2\j(c2 -a2)(c2-b2) 1 
b2(c2~a2) S_(c)\]c+b Vh* -c 

c<h*<3a. 

The history of Ku has a square root singularity at t/l = c, but 
again a finite value is found at t/l = a from the integration. 
In the above expressions, P{h) = (h + c) (2h2 - b2)S+(h)/ 
l(2h2 - b2)4 + \bh\h2 - a2){b2 - h2)]. 

For numerical evaluation of these expressions Poisson's ra
tio, v, is assumed to be equal to 0.25. In this case, the ratios 
of the slowness are b2 = 3a2 and c2 = 3.549a2. The stress 
intensity factors have been evaluated numerically by appli
cation of the appropriate Gaussian quadrature rules with Che-
bychev polynomial interpolations. The results are shown in 
Figs. 7 and 8. The results are normalized by the limiting value 
of the mode II stress intensity factor as t — o° for the problem 
posed in section 1 with v(t) = 8(t). This stress intensity factor 

is readily calculated to be E/[2(l - v2) \JTTI ] (times the unit 
imposed displacement) by means of the M-integral procedure 
introduced by Freund (1978). 

Up to this point, the stress pulse grazing the lower edge of 
the crack surface has had the form of a displacement with' 
step-function time dependence. The stress intensity factors for 
general time dependence can be obtained by convolution. If 
the velocity on the lower edge is prescribed as an arbitrary 
function of time v(t), then the stress intensity factor for this 
situation is 

K(t): i: K(t)-s)v(s)ds. (28) 

5 Discussion 
In the foregoing sections, the exact elastodynamic stress 

intensity factor history has been determined for a particular 
case of asymmetric impact of an edge-cracked plate. The stress 
intensity factor results for impulsive imposed velocity v(t) 
= 5(t) are presented in Figs. 7 and 8. In themselves, these 
results are of limited practical significance. However, they 
provide the fundamental building block for determining the 
transient stress intensity factors for more realistic imposed 
velocity boundary conditions. In addition, the existence of an 
exact solution for a configuration of this sort provides a val
uable check on numerical procedures that are being developed 
to analyze more complex geometries and, eventually, impact 
with nonlinear material response. 

The exact stress intensity factor histories for step velocity 
loading v(t) = v„H(t) are given in Figs. 9 and 10. As antic
ipated, when the imposed velocity on the boundary is in a 
direction into the material, then the adjacent crack face bulges 
outward and the resulting mode I stress intensity factor is 
negative. If the crack is initially closed the faces would press 
against each other and, in fact, no mode I stress intensity factor 
would develop. On the other hand, if the crack is initially held 
open by some background equilibrium load or if the geometry 
is such that a small opening exists beforehand, then the crack 
will indeed tend to close upon application of the boundary 
velocity. 
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Fig. 10 The mode II stress intensity factor corresponding to the result 
in Fig. 9. The data points are those reported by Kalthoff (1987). 

The magnitude of the mode I stress intensity factor is always 
less than the magnitude of the corresponding mode II stress 
intensity factor, but the value is significant. A single parameter 
that is useful in characterizing the near-tip field under mixed-
mode conditions was introduced by Shih (1974). The parameter 
is defined by 

9TCe= - t an -
ir '© (29) 

3 sin' 

and it is called the mixity parameter. The dependence of the 
mixity parameter on time for the problem analyzed here is 
shown in Fig. 11, where it is seen that the value varies only a 
small amount from -0.25 over the time interval of interest. 

If it is assumed that the crack will grow in a direction de
termined by the condition that the circumferential tensile stress 
within the asymptotic field is maximum then the angle between 
the crack line and the direction of growth satisfies 

@ - t a n ( f ^ ) c o s Q s i n Q - l = 0 . (30) 

The angle 8e that satisfies this condition for the problem ana
lyzed here is also shown in Fig. 11 where it is seen that this 
angle varies only slightly from 63 deg in the time interval of 
interest. 

The possible influence of crack face interaction resulting 
from the tendency for the crack to close under compressive 
loading is difficult to assess at this point. In the pure mode I 
problem considered by Freund (1974), the crack could be viewed 
as closed with normal pressure acting or open with no traction 
acting. In the mixed-mode case considered here, however, the 
crack faces would tend to slide with respect to each other if 
they are in contact so that the two modes are coupled in a way 
that has not yet been sorted out. Perhaps some progress on 
this point could be made by considering the case of closed 
crack faces, that is, continuous normal traction and velocity 
across the crack, but zero shear traction over the entire crack 
surface. This problem could be analyzed by the procedure used 
here. 

Data taken from the work of Kalthoff (1987) are also shown 
in Fig. 10. He measured the speed of the impacting projectile 
in the configuration of Fig. 1, and the resulting stress intensity 
factor histories were observed by means of the optical shadow-
spot method. In his experiments, interaction between the crack 
faces was avoided by cutting the cracks into the plate so that 
there was a finite gap between the crack faces. Thus, both a 
mode II stress intensity factor and a compressive mode I stress 
intensity factor could be generated, as modeled in the present 
analysis. To enter the data for steep specimens struck by steel 

Normalized Time e t / i 

Fig. 11 The mixity parameter defined in (30) for the stress intensity 
factors given in Figs. 9 and 10, and the corresponding direction of crack 
growth based on a maximum circumferential tensile stress criterion 

projectiles on Fig. 10, the velocity value v0 imposed on the 
edge of the specimen was determined by assuming that the 
portion of the specimen struck by the projectile (see Fig. 1) 
had the same elastic impedance as the projectile itself. Thus, 
from elementary wave propagation theory, the value of v0 was 
essentially one-half of the speed of the incident projectile. The 
agreement between the analytical model results and the ex
perimental results for the low velocity result (y0 = 6.5 m/s) 
is excellent over the time range for which data are reported. 
On the other hand, the observed mode II stress intensity factor 
for the higher velocity impact (v0 = 16.5 m/s) is less than the 
theoretical result up until the time cdt/l — 2, and substantially 
greater thereafter. Kalthoff (1987) also reported results of one 
experiment on the brittle plastic Araldite B which, when nor
malized, were closer to the analytical results than the high 
impact velocity steel results but which differed in the same 
general way. Nonetheless the trend between the observed var
iation of Kn with time and the analytical result are consistent 
in both cases up until cdt/l ~ 2. The differences thereafter 
could be due to nonlinear material response in the crack tip 
region or to the influence of other features of the experiment 
riot taken into account in the analytical model, such as the 
presence of the second crack. Both of these possibilities are 
being pursued through further work based on detailed nu
merical simulation of the process. 
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Stress Singularity at the Free 
Surface of a Dynamically Growing 
Crack 
The stress singularity at the intersection between the crack front and the free surface 
of a dynamically growing crack in a linear elastic isotropic material has been 
numerically evaluated by an especially developed finite element program. The 
singularity parameter (A), defined by <r~Rx~', is presented as a function of the 
crack-tip velocity and the angle (|8) between the crack front and the free surface. 
The angle (/3) at which the singularity (A) equals 0.5 was found to be 101 deg 
almost independently of the crack-tip velocity. 

1 Introduction 
The stress field close to a crack tip in a linear elastic material 

has a r^0-5 singularity, where r denotes the distance from the 
crack tip. The crack-tip velocity has an influence on the 
angular dependence but not on the strength of the singularity. 
It should, however, be emphasized that these facts are only 
valid inside a body at points where the crack front is smooth. 
In particular, the aforementioned stress and displacement 
fields will not be valid close to the point where the crack front 
meets a free surface. Benthem (1977) was apparently the first 
one to determine the stress singularity at such a point for a sta
tionary crack. By an application of series expansions of 
Neuber-Papkovich potentials he found that, for a Poisson 
ratio of 0.3, the stresses behaved as r~0A52i close to the 
singular point. Later, Benthem (1980) resolved the same 
problem by an application of a finite difference technique. He 
was then able to confirm the previous results. Bazant and 
Estenssoro (1979) solved the same static problem as Benthem 
by a finite element technique. They also investigated cases for 
which the crack plane and the crack front formed arbitrary 
angles to the free surface. By energy arguments they claimed 
that the inclination of the crack plane and the crack front must 
be such that the singularity coincides with the internal r~0-5 

stress singularity. Their conclusions seem to be confirmed by 
experimental results, (see Bazant and Estenssoro (1979), 
(1980)). The energy release rate along a stationary crack front 
has been numerically studied by Burton et al. (1984) for some 
crack/surface intersection problems. It is observed that a 
decay in the energy release rate takes place as the free surface 
is approached. This decay is expected from the weaker 
singularity previously mentioned. For the problems treated by 
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Burton et al. (1984), this three-dimensional effect was 
probably not significant from a fracture toughness testing 
point of view. However, if the deformation field on the free 
surface close to the crack tip is used in the analysis of the ex
periments, this might not be true as will be discussed later. 
Burton et al. (1984) also points out that three-dimensional ef
fects might be more important if near-surface residual stresses 
are present. 

In the present investigation the previously discussed prob
lem has been analyzed for a dynamically growing crack. The 
stress singularity has been determined as a function of crack-
tip velocity and the angle between the crack front and the free 
surface. The problem is numerically solved by a finite element 
formulation which is similar to that used by Bazant and 
Estenssoro (1979). For a vanishing crack-tip speed the 
numerical results from Bazant and Estenssoro (1979) could be 
confirmed, and at nonvanishing crack-tip velocities, the addi
tional dynamic terms had an influence on the results. 

The results from this investigation contribute to the 
understanding of curved crack fronts for dynamically growing 
cracks. By using the same energy arguments as Bazant and 
Estenssoro (1979) it can be argued that also for a dynamically 
growing crack, the crack tip at the free surface is trailing 
behind the crack tip inside a finite thickness specimen. 

Many experimental dynamic fracture mechanics investiga
tions have been based on optical methods combined with high
speed photography for the determination of crack-tip speed 
and stress intensity factors. Based on the present results, one 
should be aware of two facts when such experimental data are 
evaluated. First, the crack length measurement which is based 
on a surface evaluation can be wrong because of a curved 
crack front. Secondly, if the displacement fields are measured 
too close to the crack tip at the free surface, they are governed 
by the singular fields which have been analyzed in this report. 
If the determination of the stress intensity factors is then based 
on the two-dimensional plane-stress solution, errors can oc
cur. For thin sheet specimens, these two error sources are 
probably negligible. However, if thicker specimens are ex
perimentally investigated, one should be aware of the 
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Free surface 

Fig. 1 Definition of coordinate systems and the angle /3. The crack 
propagates in the x-direction, and the shaded area represents the un
broken ligament. 

aforementioned problems. The size of the region around the 
crack tip inside which the two-dimensional plane-stress solu
tion for a stationary crack does not prevail has been ex
perimentally investigated using the method of caustics by 
Rosakis and Ravi-Chandar (1986). These authors did find that 
for a straight crack front perpendicular to the free surface 
there is a region of approximately half the specimen thickness 
within which the plane-stress solution is no longer applicable 
and three-dimensional effects cannot be neglected. The same 
result was observed by Yang and Freund (1985), who explored 
the three-dimensional crack problem using a boundary layer 
approach. 

In the present report only symmetrical stress fields have 
been evaluated. This corresponds to mode I loadings in the 
fracture mechanics terminology. The numerical method 
could, however, be easily applied to solve antisymmetric 
problems. 

2 Theoretical Basis 

A dynamically growing crack in a linear elastic isotropic 
material is considered. The crack plane is perpendicular to a 
free surface and the crack front forms an angle, /3, to the free 
surface (see Fig. 1). 

For the determination of the stress and displacement fields 
close to the point where the crack front meets the free surface, 
it is convenient to introduce a moving Cartesian coordinate 
system (*,, x2, x}) which is based at this point. The x3-axis 
coincides with the crack front, the x2-axis is perpendicular to 
the crack plane and lies on the free surface, and the x raxis lies 
in the crack plane and forms an angle P-T/2 with the free sur
face (see Fig. 1). 

Based on the principle of virtual work, the stress and 
displacement fields in a volume (V) bounded by the surface 
(S) can be determined from 

f aij8eiJdV+ \ pufiUidV^ \ TfiUfdS, (1) 

where CT,-,, eiJt «,-, and w, denote the physical components of the 
stress tensor, the strain tensor, the displacement vector, and 
the acceleration vector, respectively. Tt is the traction vector 
and p the density. Virtual displacements are denoted by 5w, 
and virtual strains by fie,-,. 

If it is assumed that a steady-state condition has been 

reached (the fields are independent of time in the moving coor
dinate system), the acceleration vector can be written as 

where a denotes the crack-tip velocity and x is a coordinate in 
the direction of crack growth (see Fig. 1). The steady-state 
assumption is not severe since it can be proved that asymp
totically close to the origin of (xx, x2, x3), equation (2) is 
always true. 

The introduction of equation (2) in equation (1) and an ap
plication of the divergence theorem leads to an alternative ex
pression for the principle of virtual work, 

+ ( pd2-p-8uinxdS= \ Tfiu^S, (3) 
J s ox J Sf 

where nx denotes the component of the normal vector in the 
direction of crack growth. 

For the investigation of stresses and displacements close to 
the origin of the moving coordinate system, it is useful to in
troduce a spherical coordinate system according to 

Xi = 7?sin0cos</>, 

x2 = 7?sin0sin<£, 

Xi = RcosO. 

(4) 

For small R, it can be assumed that the displacements 
behave like Rx, where X is an unknown constant (see Benthem 
(1977), Bazant and Estenssoro (1979)). The reason for this 
assumption is that no characteristic length exists in the 
problem. The assumed R dependence implies that 

u,(R,0,<l>) = # X M , ( 0 , < « , 

e„(tf,0,0) = &-•"€„ (e,4>), 

ou(Rft,4>) = GR^WO,*), 

du, 

~b~x 
(R,e,<t>) = ^ - 1 «,,(»,*). 

(5) 

(6) 

(7) 

(8) 

Here, a bar denotes a function which only depends on 6, <j>. 
In equation (7), G denotes the shear modulus. 

If equations (4)-(8) are introduced in equation (3), the 
volume integrals can be performed explicity in the i?-direction 
and surface integrals result. This is valid under the assumption 
that Re(X)> - 0 . 5 , which is the condition for a finite strain 
energy close to the origin (see Benthem, 1977). The surface in
tegral formulation must be valid for arbitrary surfaces defined 
by R = R(d,<j)). If a spherical surface, R=R0, is selected, the 
resulting equations can, after some rearrangements, be written 
as 

[du8ey-(2\+l)dunJ8ui-M
2(.uiiX8uitX 

- (2X + l)uitXnx5Uj)]smed6d<i> = 0. (9) 

Here, the Mach number, M, has been introduced, 
M2 = d2/(G/p), and the tractions, fh has been written as 
f, = tyiy. 

The stresses, dy can, through Hooke's law, be expressed in 
terms of the strains €y, which in turn can be determined from 
the displacements, «,. Hence, equation (9) expresses a weak 
formulation for the determination of ut. The problem is 
homogeneous, and nontrivial solutions can only exist for cer
tain values of X, the eigenvalues X„. Of practical interest are 
those X„ for which the real part is larger than - 0.5. Smaller X„ 
give rise to infinite strain energies which are physically 
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unrealistic. It is also observed that the solution with the 
minimum X„ will be the most singular one. Thus, the problem 
is defined by the determination of the minimum eigenvalue 
with a real part larger than - 0 . 5 . 

If a static problem is considered, M = 0 , the same problem 
as was investigated by Benthem (1977) and Bazant, Estenssoro 
(1979) results. Bazant and Estenssoro (1979) use a slightly dif
ferent derivation and an apparently different equation results. 
It can be shown that their formulation and the present one are 
equivalent. 

Based on equation (9) a finite element formulation can be 
defined. As is explained in ,the next section, a generalized 
nonlinear eigenvalue problem for approximate solutions of X„ 
and the corresponding eigenfunctions u,- will result. 

3 Numerical Procedure 

In the derivation of the finite element equations it is con
venient to introduce a vector notation. Denote by u, e, a, and 
ua the vectors formed from the components of the tensors uh 

e,y, Sy, and uix in the spherical coordinate system introduced 
in equation (4). The displacement vector is then written as 

u = Ha (10) 

where H is a matrix containing the shape functions and a is a 
vector of nodal displacements. The expressions for e, a, and 
u x are preferably divided into two parts according to 

6 = B,a + XB2a (11) 

ff=Ce = CB,a + XCB2a (12) 

ux = D lQ: + XD2a. (13) 

Here, C is the constitutive matrix normalized with respect to 
the shear modulus; B, and B2 are matrices independent of X 
formed from the strain-displacement relations in the spherical 
coordinates, and D, and D2 are matrices independent of X 
derived from equation (8). Introducing equations (10)-(13) in
to equation (9), and taking into consideration that this equa
tion must hold for arbitrary variations ba yields 

\\ \ [B1
rCB1+X(B,rCB2 + B2

7'CB1) + X2B2
rCB2 

- M2(Dl
 TDy + X(D! r D 2 + D2

 r D,) + X2D2
 rD 2) 

+ M2(HTDl +X(2H rD! + HTB2) + 2\2HTD2)nx 

- (H rNCB, +X(2H7'NCB1 +H r NCB 2 ) 

+ 2X2HrNCB2)]sin0<flWja = O. (14) 

In equation (14), N is a matrix formed from the components 
of the normal vector n, so that Na is equivalent to £,•,«,. 

The integration in equation (14) should be performed over 
the surface of a half sphere surrounding the corner. Since the 
angle 0 is measured from an axis along the crack front, the 
following limitations on the integration domain can be derived 

0<<£<ir, (15) 

„ „ /tan(7r -0)\ 
0 = 06=arctan( i t-i , if 0<O then 0 - 0 + TT. (16) 

\ COSc/> / 

In equation (15), symmetry, with respect to the crack plane, 
has been assumed. 

Special attention must be given to the matrices Dj and D2 , 
and to the component nx of the normal vector when the crack 
front is not normal to the free surface. In this case D, and D2 

can be derived from 

u,x = Uilsin(7r-/3) + u,3cos(7r-^), (17) 

where u,, and u,3 follows from equations similar to equation 
(8). In the same way the x-component of the normal vector 
follows as 

nx = sin0cos</)sin('7r — /3) + cos0cos(7r — j3). (18) 

The finite elements used in the present analysis were four-
noded isoparametric elements in the (0,</>) plane. This means 
that the basic shape functions included in the matrix H have 
been considered as bilinear, i.e., as a + bd + c<j> + dd<l>. The in
tegrals in equation (14) were evaluated by Gaussian numerical 
integration using -nine integration points per element. This 
leads to the formulation of an eigenvalue problem 

(K0 + XK,+X2K2)a = 0, (19) 

where the matrices K0, K,, and K2 follow from equation (14) 
in a straight forward way. 

For the solution of the generalized nonlinear eigenvalue 
problem defined by equation (19), a value of X is assumed and 
a specified component, ak, of the nodal displacement vector is 
set to 1. A standard equation solving subroutine is then used 
to solve for the remaining a,. When all a, are known, it is 
possible to calculate the right-hand side, Pk, of equation k. 
This procedure is iterated and X is varied according to a 
modified Powell hybrid method, implemented in a standard 
library subroutine, until a X for which Pk = 0 is found. To 
make it possible to search for complex eigenvalues, a 
subroutine giving the solution to a complex system of equa
tions was used in the finite element code. However, for the 
problems stated in this report no complex X was found. 

4 Numerical Results 

The singularity parameter X has been determined for sym
metrical mode I crack growth as a function of the nondimen-
sionalized crack-tip velocity M and the angle /3. The stress 
boundary conditions on the free surface, 8 = db, and the crack 
surface, <j> = ir, are automatically satisfied by the finite element 
method. To impose symmetry with respect to the crack plane, 
the displacements in the </>-direction at <j> = 0 were set equal to 
0. 

To obtain accurate results for X with the four-noded 
isoparametric finite elements an extremely fine mesh would 
have to be used. However, as pointed out by Bazant and 
Estenssoro (1979), this is not necessary since the convergence 
pattern can be exploited to greatly improve the accuracy, pro
vided that the grids for various subdivisions are all similar, 
generated according to the same rule. In this study grids of 32, 
50, 72, 128, and 200 finite elements, corresponding to subdivi
sions 4 x 8 , 5x10, 6x12, 8x16 and 10 x 20 in the 0 and in
directions, respectively were used. 

The value X obtained from an extrapolation to an infinite 
number of elements was calculated by assuming 

log(XN - X) = logA + mlog ( — ) (20) 

and determining the unknown constants X, m, and A by a least 
square fit to the numerical values \N obtained from grids of 
different number of finite elements N. If there were no gra
dient singularities in the functions H, (0 , <j>), a value of m= 1 
would be expected. In the present formulation the functions 
exhibit a gradient singularity for 0—0, so that a value of m < 1 
could be expected. For the results presented in this work, m 
was between 0.94 and 0.96. It was observed that for higher 
crack-tip velocities it was usually necessary to leave out the 
value of X/v obtained from N= 32, since it did not show an ac
ceptable convergence pattern. 

To check the numerical formulation and the implementa
tion into the finite element program, values of X were com
pared with the results of Benthem (1977) and Bazant, 
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Table 1 Values of X as function of nondimensionalized 
crack-tip velocity M; fi = 90 deg, v = 0.3 

M 0.0 
X 0.548 

0.1 
0.548 

0.3 
0.551 

0.5 
0.561 

0.7 
0.600 

Estenssoro (1979) for a stationary crack. In general, these 
results showed very good agreement as will be noted later. 

There does not seem to exist any tests which completely 
check the velocity-dependent terms of equation (14). One test 
which gives some confidence in the results is to impose sym
metry boundary conditions at B = 6b for /3 = 90 deg. In this case 
the corner singularity reduces to a line singularity, which is 
known to have a value of X equal to 0.5 for all M. For this 
problem the extrapolation to N~oo from values ofN= 18, 32, 
72, and 128 provides a X which is less than 0.6 percent from 
the correct value, for cases where M=0.0 and 0.5 and 
Poisson's ratio v = 0.15. 

All results presented in the remainder of this section are 
calculated for v = 0.3. In Table 1 values for X for /3 = 90 deg are 
presented for different crack-tip velocities. The value for a sta
tionary crack, X = 0.548, is in close agreement with the result 
of Benthem (1977), X = 0.5477, Bazant and Estenssoro (1979), 
X = 0.548, and Andersson (1988), X = 0.5465. Andersson ob
tained his result by use of a p-version of the finite element 
method. In Fig. 2 results for different angles /? are presented. 
Of particular interest is the value, fios, for which a stationary 
crack has a singularity parameter X equal to 0.5. The 
parameter X depends almost linearly on /3 and a least square fit 
of a straight line to the numerical values gives I50$ = 101.1 deg. 
This is almost identical to the result of Bazant and Estenssoro 
(1979), 0O.5 = 101.16 deg. 

The results for /3 = 100 deg need a special comment. Figure 2 
indicates that X is a slightly decreasing function of M except 
for crack-tip velocities close to the elastic Rayleigh surface 
wave speed M~ 0.9262, where a pronounced increase takes 
place. This decrease of X might be an effect of the extrapola
tion procedure since the values of \N, for all the grids used, is 
monotonously increasing with crack-tip velocity. A more cor
rect curve for 0 = 100 deg might be slightly increasing for low 
values of M and then show a steeper increase in X close to the 
Rayleigh wave speed. One conclusion is that for values of /3 
close to 101 deg, X is very insensitive to variations in M. 

5 Discussion 

In the present finite element formulation, no special con
siderations were taken of the square-root singularity in the 
displacement gradients expected at 6 = 0, (i.e., points close to 
the crack front). If singular finite elements had been applied, a 
better convergence rate would have been expected. However, 
in this investigation, the efficiency of the numerical implemen
tation was not the main objective. Judging from comparisons 
with previously published results for static problems, the 
present results should have about three significant figures. 

The results in Fig. 2 show that the dynamic effects on the 
singularity are small for moderate crack-tip velocities (M) in 
comparison with the Rayleigh velocity. This is not surprising, 
since the crack-tip velocity enters the governing equations, 
equation (9), as M2. It can thus immediately be concluded that 
for small (M), the singularity parameter (X) will depend on 
(M) as \ = \0 + qM2, where (q) is a constant. 

The crack front angle (/3) at which the singularity is the 
same as for an internal crack (X = 0.5) seems to be very in
dependent of the crack-tip velocity. Thus, if the arguments put 
through by Bazant and Estenssoro (1979) hold, the crack front 
will form an angle (/? =101 deg) almost independently of the 
crack-tip velocity. 

0.60 

0.55 

0.50 

0.45 

Fig. 2 Values of X as function of nondimensionalized crack-tip velocity 
M at 0 = 90 deg, 95 deg, 100 deg, and 105 deg, i- = 0.3. Indicated in the 
figure is the Rayleigh surface wave speed (M = 0.9262). The dotted line 
represents a region where the extrapolation procedure did not converge 
satisfactory. 

All results in Fig. 2 indicate that the singularity parameter 
(X) rapidly varies as the Rayleigh surface wave speed is ap
proached. It was difficult to numerically determine accurate 
values of X for these crack-tip velocities. One can only 
speculate on what the behavior of X would be for crack-tip 
velocities close to the Rayleigh speed. Further, more detailed 
numerical investigations are necessary to resolve this problem. 
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A P P E N D I X 

The matrices B, and B2 can be derived from the following 
relations between the strain components, e, and the 
displacements, u, in spherical coordinates. It is convenient to 
write the relation in the form e = Eii, where E is an operator 
operating on u. Defining i and u as 

the elements of E can be written as 

Eu = X, 

En 

E2l 

En 

En 

En 

= El2-E23 

= £3 , = 1, 

F _ 3 

= cote, 

= £"51 = E62 

-E43-Es2' 

d 
= l / s in0— 

(Al) 

(A2) 

(A3) 

E42 = E53 = (K-1), 

--cote. 

The matrices D, and D2 are derived from the expressions 
u j =Fu and u 3 =Gu. Here, F and G are operators given by 

d sin</> d Fl \=F22= F33 = XsinecOS0 + COS0COS(/>-— — - —-, 
00 S1IW oq> 

(A4) 

Fa = 

En = 

Fl3 = 

and 

— F2I = — cos0cosc/>, 

-F31=sin</), 

—E32 = cot8sm4>, 

Gi 1 = G22 = G33 = Acosfl - sin6»—, 

G12= —G2l =sine, 

G13=G3i =G2 3 = G32 = 0. 

(A5) 
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Dynamic Mixed Mode Ml Crack 
Kinking Under Oblique Stress 
Wave Loading in Brittle Solids 
The dynamic stress intensity factors of an initially stationary semi-infinite crack in 
an unbounded linear elastic solid which kinks at some time tf after the arrival of a 
stress wave is obtained as a function of kinking crack tip velocity v, kinking angle 
5, incident stress wave angle a, time t, and the delay time tf. A perturbation method, 
using the kinking angle <5 as the perturbation parameter, is used. The method relies 
on solving simple problems which can be used with linear superposition to solve the 
problem of a kinked crack. The solutions can be compared with numerical results 
and other approximate results for the case o/t f = 0 and give excellent agreement 
for a large range of kinking angles. The elastodynamic stress intensity factors of 
the kinking crack tip are used to compute the corresponding fluxes of energy into 
the propagating crack-tip, and these results are discussed in terms of an assumed 
fracture criterion. 

Introduction 
When dynamic loading is applied to a body with an internal 

crack, the stress gradually intensifies at the crack-tip and after 
some finite delay time, the resulting stress waves may cause 
the initiation of crack growth and continued crack propaga
tion. A frequently observed fracture event is the kinking or 
bifurcation of an initially straight crack. The direction of prop
agation, as well as the velocity of crack propagation, will 
depend on the local stress field around the crack-tip. To un
derstand the observed bifurcation events in brittle material, 
the dynamic solution for cracks which suddenly branch or kink 
is required. The problem of a crack that is branching at an 
arbitrary angle with the primary crack is difficult to solve, and 
much of the analytical work is elastostatic in nature. A great 
deal of progress has been made recently in analyzing the prob
lem of elastodynamic crack branching problems in homoge
neous, isotropic elastic solids. One method which seems to 
have potential for analytic solutions was proposed by Ach
enbach and Varatharajulu (1974). The method takes advantage 
of the self-similarity of the particle velocity of the diffracted 
field, which occurs when appropriate conditions on the incident 
wave and the crack geometry are satisfied. This method was 
used by Burgers and Dempsey (1982) to construct exact so
lutions of symmetric crack bifurcation in antiplane strain for 
a specific angle. Subsequently, Dempsey, Kuo, and Achenbach 
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(1982) have used a conformal mapping to obtain the analytical 
solution for the mode III crack kinking problem for stress 
wave loading. The problem of symmetric and asymmetric crack 
bifurcation in mode III has been studied by Dempsey, Kuo, 
and Bentley (1986). The solutions in Burgers and Dempsey 
(1982) and Dempsey, Kuo and Achenbach (1982) verified the 
numerical method being applied by Burgers (1982). This method 
has since been used by Burgers (1983) and Burgers and Demp
sey (1984) to provide numerical solutions to the plane-strain 
crack kinking and bifurcation problems, respectively. 

For an important range of kinking angles, the elastodynamic 
crack kinking stress intensity factors are affected more by the 
loading of the new crack faces than by the wedge geometry. 
This suggests that a suitable first-order approximation would 
be to ignore the wedge geometry and to compute the elasto
dynamic stress intensity factors by considering a crack prop
agating in its own plane provided, however, that the new faces 
are subjected to traction corresponding to those of the branched 
crack. This approximate method for both mode III and mixed 
mode I-II crack kinking under stress wave loading was inves
tigated by Achenbach, Kuo, and Dempsey (1984). In all the 
results mentioned, the problems are restricted to being self-
similar; it is assumed that the new crack initiates out of the 
original crack-tip at an angle at the same time as the stress 
wave loading arrived at the crack-tip. 

It was observed by Achenbach (1970) that if a plane-stress 
pulse strikes a half-plane crack in an initially undisturbed me
dium, instantaneous crack propagation can occur only if the 
stress pulse front carries a square-root singular stress. Hence, 
it will greatly improve the model by allowing a finite delay 
time in the initiation of the nonplanar crack. This finite delay 
time effect also observed in a series of paper by Ravi-Chandar 
and Knauss (1984a, b, c, d). But if we do so, the problem loses 
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its self-similar nature. The only solutions for the newly initiated 
crack propagating after a delay time have been first obtained 
by Freund (1973, 1974), and these solutions are restricted to 
the crack remaining straight. More recently, a finite delay time 
has been included in the initiation of the nonplanar crack by 
Ma and Burgers (1986), in which the approximate method in 
Achenbach, Kuo, and Dempsey (1984) has been used for ana
lyzing the antiplane-strain case. Ma and Burgers (1987) ex
tended the delay time effect to the in-plane case for incident 
stress wave which is parallel to the crack faces. 

The analysis undertaken here is the extension of the previous 
work in which both the incident longitudinal and transverse 
stress wave parallel to the crack faces was solved. We consider 
the dynamic crack growth out of the original semi-infinite crack 
at an angle to the original crack at some time after the oblique 
longitudinal (or transverse) stress-wave loading initially inter
acts with the crack tip. The geometry for the kinked crack 
under consideration with the wavefront pattern for stress-wave 
loading is shown in Fig. 1. A perturbation method is used to 
obtain the first-order solution of the dynamic stress intensity 
factor near the kinking crack-tip. When the kinking angle is 
zero, the solutions obtained in this paper reduce to the results 
of Freund (1973, 1974), and reduce to the solutions of Ach
enbach, Kuo, and Dempsey (1984) as the delay time tends to 
zero. The energy flux into the propagating kinked crack-tip 
can be obtained from the dynamic stress intensity factors, and 
those results are discussed in terms of an assumed fracture 
criterion. 

Required Fundamental Solutions 
Consider a stress-free linear elastic homogeneous isotropic 

infinite medium that contains a stationary semi-infinite crack, 
which will be referred to as the original crack, which lies along 
the negative x-axis with the origin of the coordinate system at 
the crack-tip. At time t = 0, a horizontally-polarized longi
tudinal wave (or transverse wave) strikes the stationary crack-
tip at angle of incidence a. A short time later, at / = //, a 
crack referred to as the new crack propagates out of the tip 

Fig. 1 Stress wave front pattern for a planar stress-wave impacting a 
kinking crack 
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of the semi-infinite crack with a constant velocity v (less than 
the Rayleigh wave speed) making an angle 5 with the original 
crack, thus producing a kinked crack. 

The field solution for a kinked-crack geometry can be con
sidered as the superposition of the field generated by diffrac
tion of the incident wave by the stationary crack and the field 
from the new crack faces subjected to crack-face tractions, 
which are opposite in sign to the stresses computed from the 
stationary crack problem. The fields generated by kinking of 
a semi-infinite crack upon diffraction of a longitudinal or 
transverse stress wave are extremely difficult to analyze. The 
analysis involves coupled integral equations, which must be 
solved numerically. (See Burgers (1983) and Burgers and 
Dempsey (1984).) We use the first-order approximation of the 
dynamic stress intensity factor for a kinked crack, which can 
be expressed by the stress intensity factor for a straight crack, 
propagating in its own plane, subjected to the negative of the 
traction computed from the stationary crack problem along 
the line of the kinked crack. The solutions for the approxi
mation method for the kinking crack under stress-wave loading 
can be separated into a number of different problems, all of 
which are relevant problems in their own right. By building 
up the so-called fundamental solutions of more basic problems, 
the solution of the final problem can then be solved. Some 
fundamental solutions needed for solving the dynamic stress 
intensity factor of the kinking crack will be presented. 

In a stationary coordinate x-z system, a homogeneous, iso
tropic, linearly elastic medium is governed by the two-dimen
sional wave equations 

V z 0-

vV-*V=o, 

(1) 

(2) 

where 

\\ + 2n 

a and b are the slowness of longitudinal and shear waves, 
respectively, /t and p are the shear modulus and the mass density 
of the material, and X is the Lame elastic constant. The dis
placements are derived from the potentials according to u = 
cf>,x - \j/,z, w = <j>,z + \p,x, where u and w are the displacements 
in the x and z directions. The stresses can be written in terms 
of the potentials by means of Hooke's law. 

Diffraction by a Stationary Crack. Consider a special 
problem for a tensile stress loading applied uniformly on the 
stationary crack faces z = 0. The following mixed boundary 
conditions on z = 0 are considered: 

o{z(x,0,t)= -OoHit + xa*) for - o o < x < 0 , 

oxz(x,0,t)=0 for -OO<A:<OO, 

w(x,0,t)=0 for 0<.x<oo. 

(3a) 

Ob) 

(3c) 

where a* = a sin a and H represents the unit step function. 
The full field solutions of stresses for - T / 2 < 6 < ir/2 are 

A 

o'xz 

[' T r(2\2-&2)2$(s)i . 

- \br Im[4X2(a-X)1/2(Z>2-X2)1/2$(s)] 

- {arIm[2X(2X2-Z>2)( f l-X)1/2*(s)]x=V 

+ JirIm[2X(2X2-Z>2)(a-X)1/2$(5)] 

x=\Tds, (4a) 

ds 

ds, (4b) 
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A > 

where 

Im 
(2X2 - fe2)(2X2 + 62-2a2)$ 

ds 
\=\L 

(a + \)l/2 

+ j 6 r Im[4X 2 («-X) 1 / 2 (* 2 -X 2 ) 1 / 2 *] x =x r *, (4c) 

' * = - [ ' ! V Im[4\2(b-\)U2(a2-\2)l/2<f>(s)]x=x,ds 

Im 
(2X2-o2)2*(s) 

(b+\y \ = Xf 
ds, (lb) 

A=°_sAuntk=2(b2_a2)! B 
irk 

"°+(X) = (« + X)' 

JorIm[2X(6-X)1/2(2X2 + 6 2 -2c7 2 )$ ] x = X i * 

+ \br lm[2Mb-\)W2(b2-2\2)$]x=XTds, (7c) 

(c + A)S°+(A)' 

s (s2 \1/2 

A/, (S) = - - cos 0 + i I -2 - a2 J sin I (91, 

s (s2 \1/2 

\T(s) = - - cos e + i h - o 2 ) sin 101, 

where 

fl=fy*iOfM.+ ( X ) = ( 6 + X ) -
7rA: (c + A)S°+(A) 

S°±(X) = 

exp 

For r — 0, the leading two terms of the asymptotic expansion 
of (7) are 

2 /f\ ^2 ft ft ^ft 
<%** ~ ffX+ (a*) ( - ) cos - sin - cos — + o(l), (8a) 

IT \r/ I L L 

\ T J" tan 

$(*) = 

V ( / - g 2 ) 1 / 2 ( & 2 - / ) 

(b2-2y2)2 

d\/ds (X-a*)(X-c)S°_(X) 

c = \/vR is the slowness of the Rayleigh wave and satisfies 
the equation 

(2c2-b2)2 + 4c2(a2-c2)W2(b2-c2)l/2 = 0. 

The first two terms of the asymptotic expansion as r — 0 of 
the stresses are 

dy\ 
y±V' 

rid satisfies 

„ 2 / 'V / 2 0 
o £ « -ff0«°+(«*)(-) c o s - 1 

. 0 . 30" 
- sm - sm — 

2 2J 
-<J 0 + O(1), 

(8b) 
2 / A 1 / 2 0 

o S = - - o - 0 « + ( a * ) ( - ) s i n -
0 30" 

2 +cos - cos — 
2 2 

+ 0(1). 

(8c) 

a1, 
2 / A 1 / 2 

-<7 0 C0 0
+ ( « * ) ( j ; J CO 

<~^°+(**)(;) 

2 / A 1/2 

<4 = -ff0o)°+(a*)(-J co 

0 . 30 
1 + sin - sm — 

2 2 
-<x0 + o ( l ) , 

0 0 30 
cos - sin - cos — + o(l), (5) 

0 . 30 
1 - sin - sm — 

2 2 -<7 O Cxf+0( l ) , 

where 

= o 2 -2a 2 ^fa(2c2-b2) 
xx~ b2 + c2S°+(0)S'L(c)(a + c)' 

The second term in (5), which is O(l) in the asymptotic 
expansion, will play a significant role in the crack kinking 
analysis. 

For the shear loading applied uniformly on the crack faces, 
the deformation will occur in mode II. The mixed boundary 
conditions are then 

o£(x,0,t)=0 for -OO<A:<OO, (6a) 

o£(x,0,t) = -a0H(t + xa*) for -<x<x<0, (6b) 

u*(x,0,t)=0for0<x<oot (6c) 

where u* is the component of displacement in the x-direction. 
The full-field solutions for stresses evaluated for — 7r/2 < 0 
< 7r/2 are 

& f' 
B 

Point Moving Loads of Growing Crack. Consider a crack-
tip which is at rest at x = 0, and suppose there are no loads 
acting on the body for t < 0. At time t = 0, the crack-tip 
begins to move in the x direction at speed v and, simulta
neously, a symmetric pair of concentrated normal forces ap
pears at the crack-tip. For t > 0, the concentrated forces 
increase linearly in time and begin to move in the x-direction 
with speed u < v. The boundary conditions are 

(a^z)l(x,0,t) = (mt + n)A(x-ut)H(t) for -co<x<vt, 

(<fiz)i(x,0,t)=0 for - o o < x < o o , 

Wi(x,0,t)=0 for vt<x<<x>, (9) 

where A is the Dirac delta function and m and n are arbitrary 
parameters. The stress intensity factor of this problem was 
obtained by Freund (1973) 

(10) 
\fw(\-a/d)U2 (l-a/d)ul\f^i 

where 

«;w dco+(h) «+(X) 
dh ' l " + W (A + c2)S+(A)' 

S±(A)=exp(- - P ' 1 

\ 7T J°2,l 

x tan"1 V i a l 1/31 
. (2r/2 - b2 - oV/d2 T 2b\/d) \ 

dr\ 

r,±\ 

\arlm[2\(b2-2\2)(b-\)i/2$(s)]^Lds 

Jbr 

a(X) = (a2 - X2 + aW/d2 - 2a2\/d)1/2, 

/3(A) = (b2 - A2 + b2\2/d2 - 2b2\/d)1/2, 

a ± = [a±A(l=Fa/rf)]1/2, 

6 c 
«2 = 1-fl/rf'*2" 1-o/tf' c2 = l-c/d' 

Im[2X(62-2X2)(6-X)1 / 2*(^)]x = X r&, (7a) 

d = 1/v is the slowness of the crack velocity. The parameter 
h = \/(v - u) is the inverse of the relative speed between the 
moving load and the crack-tip. The other fundamental solution 
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needed is that produced by concentrated shear forces appearing 
at the crack-tip and then moving in the x direction with speed 
u. The boundary conditions are 

(o£)2(*,0,0=0 for - o o < x < o o , 

(a^z)2(x,0,t) = (mt + n)^(x-ut)H(t) for -<x<x<vt, 

u*(x,0,t)=0 for vt<x<oo. ( ' 

The stress intensity factor for this case is 

K\ •F _ 
2mh2u\ yflt \flnhu + (h) 

\Tn(\-b/d)m (1 - b/d)xn\[^t 
(12) 

where 

«+(X) = 
/3+(X) 

(X + c 2 )S + ( \ ) ' 

iS±(X)=[6±X(lTft/rf)]1/2. 

With these fundamental solutions at hand, we are now able 
to construct the solution of the stress intensity factor for the 
kinking crack. 

Crack Kinking Due to an Incident Longitudinal Wave 

Consider the incident longitudinal step-stress tensile wave 
of the form 

Ja^OoHO + arsmia-e)). (13) 

The stresses of the stationary crack problem can be obtained 
by superimposing the solutions of the symmetric and antisym
metric problems proposed in the previous section. Relative to 
polar coordinates, 

Oee = °ee + OM, <4r=oer
+aen (14) 

where 
2 

l - 2 ( ^ ) sin2(a-0) ff«fl = On 

&0r=~<Jo\T) s m 2 ( a - 0 ) , 

(15) 

(16) 

4 , = - ( l - c o s 20)(&+ - (1+cos 20)<4-sin 2101(4. (17) 

a£ = 

and 

4 = 

- - s i n 2101(4+ - s i n 2l0l<4 + cos 20 c4 sgn(0) (18) 

' - ' J (-) sin2a 4 ~ ( l ) s in2«4sgn(0) 

// = XX,2Z,«, 

where 4 represents the incident field and age is the diffraction 
field. c4 . <4> a n d <4 a r e given in (4). The first-order approx
imation of the dynamic stress intensity factor for a kinked 
crack with delay time tj can be expressed by the stress intensity 
factor for a straight crack propagating in its own plane sub
jected to the negative of the traction given in (14) on the new 
crack faces. This approximation method is discussed more fully 
by Achenbach and Kuo (1985). The appropriate boundary 
conditions are: 

(1) for the mode I stress intensity factor 

oa=0 for i < 0 , (19«) 

°ii=-oeo(x/t,6 = 8) for 0<x<v(t-tf) (196) 

and 
(2) for the mode II stress intensity factor 

ffji = 0 for x<0, (20a) 

a* ;=-<4(* / f ,0 = 5) for 0<x<v(t-tf), (20b) 

where the i'-axis lies along the kinked crack line and 5 is the 
kinked angle as shown in Fig. 1. 

Mode I Stress Intensity Factor. The stress intensity factor 
of the kinking crack due to the loading from the diffraction 
part of the stationary crack field can be constructed from the 
fundamental solution of equation (10) by choosing m = - 1, 
n = -1* = - htf/d, replacing t by t - t*, and integrating 
over the appropriate range of u = x/t. The mode I stress 
intensity factor for the propagating kinked crack is 

(Kf)d(t,v,5) = ] 0 Kf(m=-l,n=-t*,t 

-n4>(^,t) du 

-c d* f 7f "11/2 

2 %• 
i-wd(\-a/d)\ 

»+(ft)UF 

(21) 

where 

d* = 
vtf 

The integral in (21) is suited to integration by parts. It gives 
a more tractable form than (21) and allows us to get very 
simple closed-form results in some special cases. By careful 
analysis, we find that the function ogg has a square-root sin
gularity at h = d. Hence, if integration by parts is applied, 
neither the integrated term nor the remaining integral will exist, 
even though the sum exists. To get around this difficulty, the 
method suggested by Freund (1973) is applied. The lower limit 
of integration in (21) is replaced by d + e, e < < d. It can be 
shown that those terms which are singular at e = 0 exactly 
cancel each other, and the desired result can be obtained by 
taking the limit as e -~ 0. 

Integration by parts of (21) and making use of the explicit 
expression for o$e yields 

(Kf)d(t,v,8) = lim2 
e - 0 

-d) 

2L 
'•!_ 

ird(l-a/d)_ 

2dVL 

o0u+ (d) (d* 

- E L + L7re1/2(c + a*)S°+(a*) 

\d^o>+(h)(d* -h)in(4e)hdh\+o(l) 

= 2a0 

+ 

r 2t.r 
_wd(l-a/d)_ 

du+ (d)TL 

(c + a*)S%(a*) 

X 

Mir 
\-o>+(d)(d*-d)y2LL 

d f"* (d*-h)U2 

+ ir(c+a*)S°+(a*) Jrf (h-d)1/2 

[co+(cOrL u+(h)d5'2 L i 

[ (h-d) k(h-d? (ofe)*J 
dh j + o(l), (22) 

where 

TL = l-2g)2sin2« 
SJ 

cos3 - (a + a*)U2 

- I - J sin 2a ( s i n - + sin y ) ( * + « ) . 
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1 - 21 - ) sin2a j (cos25 + C^sin2^) 

+ 1-1 sin 2a sin 25. 

The complete form of (ooe)t is shown in Appendix A. The 
stress intensity factor due to the incident field (15) can be easily 
obtained as follows 

(K$),(t,v,6)= J0 ' K?(m = 0,n=-l,t-t/-^\ai
Bedxo 

Crack Kinking Due to an Incident Transverse Wave 

Consider the incident transverse stress-wave of the form 

&ii = a0HU+brsm{a-6)). (28) 

The stress components in the polar coordinate for incident 
and diffracted fields of the stationary crack are 

ai
ee = a0sm2{a-e), (29) 

c4=ff0 cos 2 ( a -0 ) , (30) 

<4e= - ( l - c o s 2 0 ) o £ + - ( l+cos20 ) f f£ - s in2 l0 lo£ , (31) 

2-\f2a0tY
2o>+(d)(d*-d)1 

\jlr(\-a/d)U2dh 
l - 2 ( ^ ) sin2(a-5) 

(23) 

The first-order approximation of the mode I stress intensity 
factor, including the delay time effect for the kinking crack 
due to the normal loading on the original crack faces, is ex
pressed in (22), and the solution for the step longitudinal stress-
wave loading is the sum of the contributions due to diffracted 
and incident fields given in (22) and (23), 

KJ=(Kf)d+(Kf), (24) 

Mode II Stress Intensity Factor. Following a similar anal
ysis as in the mode I case, the mode II stress intensity factor 
due to the diffracted field (18) can be expressed as follows 

(K'!l)d(t,v,b) = ] 0 Kfj(m = 

Oflr 

where 

- - sin 2101 o%x+ - sin 2101 a[z + cos 2Qolz sgn(0), 

(32) 

a,y = sin 2a(«4)* + cos 2a(<j^)*sgn(0), ij = xx,zz,xz. 

Here (ajj)* and (ay)* are almost the same as ajj and ay, which 
are defined in (4) and (7), respectively, except that a* should 
be replaced by b* = b sin a. 

The analysis for the stress intensity factor due to the incident 
transverse wave on a kinked crack proceeds in a similar manner 
as discussed in the previous section for the incident longitudinal 
wave. We will not report the solution procedure and only 
present the results. 

Mode I Stress Intensity Factor. 

Kj = (Kj)d+ (Kj)h (33) 

1 , 7 2 = - t •tt-n4r(\&\du (Kj)d(t,v,$)^2o0 
2t 

•L. 

ird(l-a/d) 

= 2<7„ 

where 

n,= 

2 ' / 
•Kd(l-b/d)_ 

\llr 
\u+(d)(d* 

-d)U2AL 
du+(d)UL 

(c + a*)S%(a*) 

d fd* (d*-h)U2 

+ Tc(c + a*)S°+(a*) id (h-d)yl 

u+Wd"* 1 
k(h-d? Mr)h\ 

" l - 2 @ 2 s i n 2 ; 

+ 

~u+(d)TLL 

I (h-d) 

rf*j + o(l), 

( • 5 • 36 \ 
I s m - +sin — Ua + a*yn 

1 M 2 . , / 5 „ 35\ " .., 
- - I - ) sm 2a( cos - +3 cos — Ub + a*)l/2 

)-2(ff si«2« 

>(S 
(C„-l)sin25 

) sin 2a c os 25. 

do)+(d)TT 

o>+(d)(d*-d)1/2LT 

d f" (d*-h)m 

(c + b*)S°+(b*) ir(c + b*)S°+(b*) 

~w+(d)TT w+(h)d5n 

frf (d^ 

i" (h-(h-d)1 

{h-d) k(h-d) 
3 (aee)h dh +o(l) , (34) 

where 

(25) 

r r = s i n 2a cos3 - (a + b*)U2 

sin y j (6 + 6*)1/2, 

E r =sin 2a(cos25 + C„sin25) - cos 2a sin25, 

3 „ / • S • - cos 2a 1 sin - + sin • 
4 V 2 

and 

A,= 

Details of (po^l a r e given in Appendix A. The mode II stress 
intensity factor due to the incident field (16) is 

(KfI)i(t,v,8) = j 0 ' KfI(m = 0,n = -l,t-t/-*z\o'lrdxo ' 

2sj2o0ty
2u+{d)(d*-dy/2/aY . ^ 

= r ( T ) s in2(a~5) . (26) 
\hrtt-b/d)1/2dU2 W 

trt i* « 2\l2<j0ty
2u+(d){d*-d)1/2 . 

(K})i{t,v,S)^ — -j± s m 2 ( a - 5 ) . (35) 
^t(l-a/d)[/2d[/2 

Mode II Stress Intensity Factor. 

(36) 

(Kj,)d(t,v,S) = 2a0 
2t, lL. 

ird( 1 - b/d)\ (. 

du+ (d)IlT 
+ (c + b*)S°+(b*) 

)u+(d)(d*-d)W2AT 

d ["* 
ir(c + b*)S°+(b*) id 

(d*-h)1 

d (h-d)l/ 
u+(d)UT 

L (h-d) 

Hence, 

Kn= (Kn)d+ (•#//)/• (27) 
u+(h)d5/ 

k(h-d)1 (<&)»* dh\ + o{\), (37) 
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where 

1 / 5 3S\ ,,, 
n r = - s i n 2 a ( s i n - +sin — I (a+b*)ln 

' 4 V 2 2 / 

c o s - +3 cos— \{b + b*yn, 
1 „ / 8 , 35^ 

+ - cos 2a I cos —1-3 cos — 
4 V 2 2 , 

A r = - sin 20(0^.— l)sin 25-cos 2a cos 25 

and 

tvTMf xx 2\[2a0ty
2u+(d)(d*-d)W2 

(K},)i(t,v,8)= jd cos 2(a~S). 
•sjw(l-b/d)mdi/2 

(38) 

Details of (aee)h ar>d (<rer)h
 a r e given in Appendix B. 

Special Cases and Numerical Results 

Some special cases are discussed to give simple closed-form 
results and can be used as a check for the numerical calculation 
of the general cases. For the kinking angle 8 = 0, the new 
crack propagates straight out of the original crack. The stress 
intensity factor can then be simplified as 

Kf = 2 P a0(\ - 2 ^ j < (a*)K,(d){t+v(t-tf)a*\m, 

(39) 

a0^-2sm2au0
+{a*)Kn{d)[t + v(t~tf)a*]W2 

IT b 

(40) 

Fig. 2 The normalized mode I stress intensity lactor versus kinking 
angle due to incident longitudinal stress-wave loading for f, = 0 and a 
= 0.375* 

K] = l I- o0 sin 2a w° (b*)n,(d)[t + v(t-tf)b*\ 
Fig. 3 The normalized mode II stress intensity factor versus kinking 

*n (41) angle due to incident longitudinal stress-wave loading for t, = 0 and a 
0.375* 

Kj,=2 P a0 cos 2a u°+ (b*)icrl(d)[t + v(t-tf)b*\xn, 

where 

(42) 

K,(d) = 

K„(d) = 

S+{d)(d+c2)(l-a/d)U2' 

S+(d)(d+c2){\-b/d) 1/2-

The functions a,{d) and Kn(d) depend only on the crack 
speed v = \/d and material properties. The values of K,{d) 
and Kn(d) decrease from unity at v = 0 to zero when the crack 
speed reaches the Rayleigh wave speed. It is worth noting that 
the solution in (39)-(42) provides exact results, without any 
approximation made in this case and reduce to the same results 
obtained by Freund (1974) for a crack propagating straight. 

If one wants to study the criterion for a crack kinking event, 
it is clear that the most significant time scale involved should 
be in the region when crack kinking has just occurred, in other 
words, t - tj << 1. The field quantities change very rapidly 
at this time period and it certainly plays an important role in 
the crack kinking events. The stress intensity factor just after 
the kinking occurs has the form 

2td 

w(l-a/d)l 

u+(d)TL 

(c + a*)S°+(a*)' 
(43) 

= 2(7, 
ltd 

ir(\-b/d) 

ltd 

ir(l-a/d) 

ltd 

_Tr(l-fe/d). 

1/2 u+ (d)IlL 

(c + a*)S°+(a*)' 
1/2 u+(d)TT 

(c + hnSKb*)' 
1/2 u+(dWT 

{c + b*)S°+(b*)~ 

(44) 

(45) 

(46) 

Just before kinking, the crack is stationary and the stress 
intensity factor can be obtained by taking the limit t — tf and 
d — oo in equations (39)-(42) or by taking the limit 8 — 0 and 
d — <x in equations (43)-(46). 

(Kf)s = la0[l -2(a/6)2sin2a](2?/7r)1/2co0
+ (a*), 

(Kjj)s= -2a0(a/b)2sm 2a(2f/7r)1/V+ (a*), 

(Kf)s = 2(T0sin 2a(2*/7r) 1/2w°+ (b*), 

{Kl)s = 2er0cos 2a(lt/w)W2u°+ (b*). 

(47) 

(48) 

(49) 

(50) 

, Because the crack-tip speed changes discontinuously at t = 
tj-, the stress intensity factor just before and after the kinked 
crack has a jump, whose magnitude depends on the crack speed 
v, the incident angle a, and the kinked angle 5. 

If we examine the special case of no finite delay time, that 
is the crack kinks at the instant the incident stress wave strikes 
the original crack-tip, the solution of (24), (27), (33), and (36) 
will reduce to the result of Achenbach, Kuo, and Dempsey 
(1984). Figures 2 and 3 show the dimensionless mode I and 
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Table 1 Comparison of numerical results according to Burgers 
(1983): (1) Achenbach, Kuo, and Dempsey (1964); (2) and this paper; (3) 
for an incident longitudinal stress wave a = 0 and I, = 0 

ftf 

0„(V,t) V1 

K-i, 

ao ( V;t)
 1/2 

\. 5 

0. 1 

0. 3 

0.5 

0.7 

0.1 

0. 3 

0.5 

0.7 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

0 

1.0070 

.9991 

. 9997 

. 8484 

.8625 

. 8623 

. 7078 

. 7023 

.7019 

.51.'»9 

.5043 

.5040 

0 

0 

0 

0 

0 

0 

0 

0 

0 

e 

0 

0 

.0625 

.9870 

.9797 

.9808 

. 8295 

. 8435 

. 8434 

. 6911 

. 6856 

.6853 

.5011 

.4916 

.4913 

. 1287 

. 1257 

.1251 

.1342 

.1276 

.1271 

.1245 

.1197 

.1192 

.•1069 

.1029 

. 1025 

. 12 5 

.9291 

.9234 

.9247 

. 7747 

.7884 

. 7884 

. 6427 

.6373 

.6372 

.4644 

.4549 

.4548 

.2465 

.2410 

.2397 

.2564 

.2436 

. 2427 

.2373 

.2277 

.2268 

.2031 

.1951 

.1943 

.25 

..7241 

. 7219 

.7239 

.5818 

.5937 

.5945 

. 4744 

.4695 

.4701 

.3385 

. 3294 

. 3299 

.4131 

. 4047 

.4030 

. 4260 

.4023 

. 4009 

. 3909 

.3711 

.3697 

.3301 

. 3136 

. 3123 

.375 

.4625 

. 4610 

.4622 

. 3387 

.3481 

.3495 

.2674 

.2637 

.2650 

. 1895 

. 1810 

. 1821 

. 4564 

.4458 

.4439 

. 4636 

. 4299 

.4285 

.4202 

. 3887 

. 3874 

. 3479 

. 3220 

.3209 

. 485 

.2482 

.2829 

.2448 

.1435 

. 1932 

.1537 

. 1068 

.1356 

.1069 

.0805 

.0899 

.0738 

. 3952 

. 3848 

. 3787 

.3962 

.3565 

.3514 

. 3551 

.3155 

.3115 

.2890 

.2570 

.2543 

mode II stress intensity factor which is valid for tf = 0 and used which gives a ratio of wave speed i>, = \l^vs, V/ = 1.884^. 
incident longitudinal stress wave angle a = 3TT/8. Note that The numerical results of the mode I and mode II stress intensity 
for all calculations in this paper, a Poisson's ratio of 0.25 is factor due to incident transverse stress wave for tf = 0 are 
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Table 2 Comparison of numerical results according to Burgers 
(1983): (1) Achenbach, Kuo, and Dempsey (1984); (2) and this paper; (3) 
for an incident transverse stress wave a = 0 and t, = 0 

K,T 

a„(y ,t)V' 

KT„ 

a,( V,t)i2 

0. 1 

0.3 

0. 5 

0.7 

0. 1 

0. 3 

0.5 

0. 7 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.3369 

1.3485 

1.3436 

1.2351 

1.2247 

1.2227 

1.0823 

1.0784 

1.0770 

. 8920 

.8817 

. 8807 

. 0625 

- .381-4 

- .3840 

- .3836 

- .3179 

- .3322 

- .3319 

- .2648 

- .2710 

- .2708 

- .1938 

- .1950 

- .1949 

1.2940 

1.3005 

1.2954 

1.1897 

1.1755 

1.1736 

1.0369 

1.0299 

1.0285 

. 8493 

. 8373 

.8363 

.125 

- .7365 

- .7397 

- .7395 

- .6086 

- .6347 

- .6343 

- .5021 

- .5133 

- .5129 

- .3622 

- .3656 

- .3653 

1.1695 

1. 1610 

1.1575 

1.0590 

1.0339 

1.0320 

. 9070 

. 8910 

.8897 

. 727E 

.7110 

. 7100 

.25 

-1.2803 

-1.2693 

-1.2690 

-1.0231 

-1.0558 

-1.0551 

- .8104 

- .8229 

- .8222 

- .555! 

- .5597 

- .5592 

. 7321 

. 6680 

.6648 

.6119 

.546! 

.5453 

. 4725 

. 425E 

. 424E 

. 3297 

.2972 

.2965 

. 375 

-1.5241 

-1.4607 

-1.4607 

-1.1571 

-1.156C 

-1.1552 

- .847! 

- .845; 

- .844: 

- .524! 

- .523? 

- .523: 

. 183: 

.046( 

. 044] 

.087] 

- .029! 

- .030; 

- .009! 

- .090f 

- .091( 

- .084' 

- .1311 

- .131! 

. 485 

-1.4983 

-1.3524 

-1.3431 

-1.0589 

-1.0130 

-1.0043 

- .7102 

- .6830 

- .6781 

- .3790 

- .3699 

- .3680 

- .2586 

- .5429 

- .4392 

- .2986 

- .5266 

- .4372 

- .3290 

- .4656 

- .4160 

- .3199 

- .3791 

- .3626 

shown in Figs. 4 and 5. These results agree very well with the 
numerical results presented by Achenbach, Kuo, and Dempsey 
(1984). A comparison with the numerical results with Ach
enbach, Kuo, and Dempsey (1984) and Burgers (1983) is shown 
in Tables 1 and 2, for both incident longitudinal and transverse 
waves with a. = 0. It shows that the first-order approximation 
method used in this paper agrees quite well with the numerical 
results of Burgers (1983). For the important range of kinking 
angles 0 < 5 < w/4, the error introduced by using this ap
proximate method is within 3 percent for mode I stress intensity 
factor and 5 percent for mode II stress intensity factor due to 
incident longitudinal wave. For incident transverse wave, the 
error is within 3 percent for mode I and 10 percent for mode 
II. This good agreement suggests that the wedge geometry of 
the kinked crack has only a minor effect on the calculation of 
the dynamic stress intensity factor. 

In order to investigate the stress intensity factor for the whole 
propagation event of the kinked crack, the normalized time 
t/t is chosen as the parameter. The instant of initiation of the 
kink is at t/t = 1, while tf/t = 0 corresponds to the time 
when the kinked crack has propagated for an infinite time 
compared to the delay time. The nondimensional stress inten

sity factor for mode I and mode II versus t/t for incident 
longitudinal wave (or transverse wave) for incident angle a = 
0.375-7T, and kinking angles 5 = ±0.1257r are calculated and 
plotted in Figs. 6-9. As we can see from these figures, the 
dimensionless stress intensity factor is significantly different 
for t/t — 0 and t/t = 1 for some cases. The mode II stress 
intensity factor has a stronger dependence on delay time effect 
than mode I case. 

Energy Fluxes and Kinking Criterion 
For mixed mode I-II fracture, the energy flux into the prop

agating crack-tip can be written in terms of the corresponding 
dynamic stress intensity factors in the form 

E=-
/ « V / 2 , / b2\W2 

2ii(PR{d) 

tit > 
2,xb2 ' (51) 

where 
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In the following calculations of E*, the stress intensity factor 
might show a negative value. A negative mode I stress intensity 
factor would correspond to the contact of the crack faces near 
the crack-tip. Hence, we would set K, identically equal to zero 
whenever the calculations show it to be negative. The effect 
on the negative mode II stress intensity factor may be ignored 
under the smooth, frictionless crack faces assumption. If the 
maximum energy release rate criterion is accepted as the kink
ing condition, then the combination of the kinking angle and 
the crack speed can be determined at which the energy flux 
into the propagating crack-tip achieves a maximum value. For 
an incident longitudinal wave, Fig. 10 shows the kinking angle 
and the crack-tip speed at which E* attains its maximum value 
for various values of a for tf = 0. The predicted kinked crack 
speed increases as the incident angle a increase. For the general 
case, the delay time is not zero, it is shown in Fig. 11 for 
incident angle a = v/4 that the kinking angle and crack tip 
speed for E* to achieve its maximum value E^ax of the whole 
time history. 

Conclusion 
With the inclusion of a delay time, the solution of the frac

ture problem becomes a great deal more realistic physically 
and more closely models real material response. An approx
imate method that ignores the corner geometry of the kink 
angle is used to construct the mixed-mode stress intensity factor 
for incident longitudinal and transverse stress-wave loading. 

A very satisfactory result is obtained when compared with the 
numerical results with no delay time effect. This good agree
ment suggests that the wedge geometry of the kinked crack 
has only a minor effect on the calculation of the dynamic stress 
intensity factor. Hence, for important range of kinking angles, 
the elastodynamic crack kinking stress intensity factors are 
affected more by the loading of the new crack faces than by 
the wedge geometry. 

The influence of the delay time effect on the calculation of 
the dynamic stress intensity factor for kinking crack can be 
obtained from Figs. 6-9. The figures show that the mode I 
stress intensity factor is weakly dependent on delay time, while 
the mode II stress intensity factor has a stronger dependence 
on delay time. For the kinking angle 5 = 0, the crack prop
agates straight out of the original crack, the stress intensity 
factors are expressed in (39)-(42). An interesting result is that 
Kf and KT

n are independent of the delay time for a. = 0. 
Frequently, an energy-based fracture criterion is used to look 

at the initiation of crack-tip motion. The criterion is based on 
the assumption that the energy release rate at initiation of 
fracture is a material parameter. For static fracture under 
small-scale yielding conditions this is well established, but for 
dynamic fracture, it is not clear that this is a suitable criterion 
beyond the initiation phase. It is unfortunately not yet clear 
from experimental results what is a suitable criterion for a 
bifurcation event. Recent attempts have been made to deter
mine the condition for crack branching from theoretical anal
ysis of the elastodynamic field quantities near the tips of the 
branches. With these theoretical results for the stress intensity 
factor of the kinking crack, an attempt can be made to de-
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termine the kink angle and the new kinked crack speed using 
different fracture criteria and to compare them with the ex
perimental results available. For this paper, the maximum en
ergy release rate is adopted for the kinking criterion. This 
energy criterion suggests that the crack will choose to propagate 
in the direction and at velocity for which the energy flux into 
the crack tip has a maximum value. For the special case tf = 
0, the general features are that the kinked crack speed v in
creases as the incident stress wave angle a increases for E* to 
achieve its maximum value E^x, and the kinked angle 5 is just 
slightly larger than a. For the general case, the kinking angle 
5 is approximately constant until t/t reaches 0.8. In general, 
v and 5 are slightly smaller than the corresponding values 
obtained by assuming no delay time. For incident stress-wave 
parallel to the crack faces (a = 0), the energy criterion predicts 
that the crack will tend to propagate straight ahead of the 
original crack which has been observed in experiments, see 
Ravi-Chandar and Knauss (1984a, b, c, d). 

The complete solutions available for the kinked crack ge
ometry that include the corner effect are still restricted to no 
delay time. There are no other results that can be used to judge 
the accuracy of the approximation in this paper when the delay 
time effect is included in the whole kinking angle range. It has 
been shown, that for 5 = 0, the results are exact. It is believed 
that this approximate method still gives a quite good accuracy 
for small kinked angles. 
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46^[g( i ; / i - l ) -e f , ] ' / 2 [ fe 2 ( i ; /? - l ) 2 -e | ] 1 / 2 n^ 

,„/ » i f 2 e a [ g ( ^ - l ) - 9 a ] ' / 2 [ 2 9 2 - & 2 ( i ; / ; - l ) 2 ] n a 

(Oft = Im ~r + 

2Qb[a(vh-l)-Qb]
,/2[2Ql-b2(vh-l)2)Qb 

tj « T (2e2-b2(vh-l)2][2e2
a+(b2-2a2)(vh- l)2]Ra 

4ella(vh-l)-Qbl
l/2[b2(vh-l)2-e2

b]
1/2Qb 

and 

f 2 9 a [ & ( ^ - i ) - e a ] 1 / 2 [ f t 2 ( i ; f t - i ) 2 - 2 9 2 R 
(<4)ft=Im[ 

_ 2eb[b(vh-i)-eb\
w2[b2(vh-i)2-2e2

b]Qb) 
n y 

(<4)* = Im 
4 e 2 [ ^ ( ; ; / i - l ) - 8 a ] ' / V ( t ; / ; - l ) 2 - e 2 ] 1 / z n , 

_ [292,-&2(^-imv? 
*6t^(^-i)+e6]1/2J' 

f 29g[ft ( ^ - 1) - 6a]
1/2[292

a + (fr2 - 2a2) (vh - 1 ) 2 R 
WxxYh = Imi 

29 6 [6 ( i ; / i - i ) -9 f c ] 1 / 2 [ fe 2 (^ - l ) 2 -29 2 , ] lV) 
+ ** J 

where 

Qa= -[ / ! 2 -o 2 (y/! - l ) 2 ] 1 / 2cos 8 + /A sin 151, 

fife=-[/*2-62(^-i)2]1/2cos5 + (/!sin 151, 

9 a = -h cos 5 + i[ / i2-a2(! ;A-l)2]1 / 2 sin 151, 

eb= -h cos 5 + i[h2-b2(vh- 1)2]1/2 sin 151, 

^ a = [ / ! 2 - a 2 ( y / i - l ) 2 ] 1 / 2 [ 9 a - a ( ^ - l ) s i n a ] 

[9 a - c (u / j - l ) ]S°„ (9 a / ( ! ; / i - l ) ) , 

* 6 = [h2 - b2 (y/i - l)2] 1/2[0A - a (vh - l)sin a] 

' [Qb-c(vh-l)]S°„(Bb/(vh-\)). 

A P P E N D I X B 

(a£)jf = (a + 6*) 1/2sin 2a(ofc)jJ + (6 + b*) 1/2cos 2a(oS)jfsgn(fi). 

(ajM = (a + b*) 1/2sin 2a(<^)A* + (6 + b*) 1/2cos 2a(<rS)*sgn(5). 

(<&)** =\<\~ c o s 25)(<&)A* + ^ (1 + cos 25)(<£)jJ 

(<&)** = 

- s i n l 2 5 l ( 0 A * , p = / o r / / 

^ sin 125 ! « ) „ • + isinl25l(afz)A* 

+ cos25«)A* sgn(6), q = I or 77, 

where (<»»»)£, (O^)*, (099)* and (a$)j? are exactly the same as 
Appendix A except changing a(vh - 1) sin a in ~ia and ~ib to 
6(yft - 1) sin a, that is 

ya=[h2-cp-{vh-\)2}y2[Qa-b(vh 

- l)sin a ] [ e a - c ( i ; / i - 1)]S°_ (Qa/(vh-Vj), 

yb=[h2-b2(vh-l)2]W2[Bb~b(vh 

-l)sma][eb-c{vh-l)]S°-(Gb/(vh-l)). 
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On Membrane and Plate Problems 
for Which the Linear Theories are 
Not Admissible 
A horizontal clamped plate is subjected to the weight of a liquid above it. When the 
free surface of the liquid coalesces with the plane of the undeformed upper surface 
of the plate, according to the classical theory of plates {which results in an eigen
value problem), nonzero deflections will exist only for discrete values of the ratio 
7/D; where 7 is the specific weight of the liquid and D is theflexural stiffness of the 
plate. The purpose of this paper is to clarify this apparently unreasonble result. It is 
shown, using a nonlinear analysis, that problems of this type exhibit a bifurcation 
point from the undeformed state and that the eigenvalues of the linear analysis 
determine merely the bifurcation points. Thus, for problems of this type, a linear 
formulation is not suitable. Because of its analytical simplicity, at first, the mem
brane strip is analyzed in detail. This is followed by the analysis of the plate. 

Introduction 
When analyzing plates, the following problem was en

countered: An infinite thin elastic strip clamped along both 
edges is subjected to a fluid, as shown in Fig. 1. The free fluid 
surface coalesces with the upper surface of the undeformed 
strip. 

For this problem the deflection is w = w{x) and the vertical 
load is 

q(x)=yw(x), (1) 

where 7 is the specific weight of the liquid. Using the classical 
bending theory of plates, the analytical formulation is 

Dwiv(x)-yw(x)=0 0<xsL 
w(0) = 0 ; w(L)=0 

w'(0) = 0 ; w'(L)=0 

where 

D = 
Eh3 

12(1 -v2) ' 

(2) 

(3) 

( ) ' = d( )/dx and E, v are the elastic constants. 
This formulation constitutes an eigenvalue problem. Except 

for the meaning of 7, it is identical to the free vibration 
problem of a clamped plate strip (Volterra and 
Zachmanoglou, 1965). The condition for the existence of a 
nonzero solution is 

cosh/3L cos/3L = 1 (4) 
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where 

" % (5) 

The corresponding eigenvalues are (/3L), =4.7300; 
08L)2 = 7.8532, . . . Because, for the problem under con
sideration, w(x) >0 in 0<x<L, only the first eigenvalue is of 
interest. Therefore, a nonzero deflection surface will exist only 
when VT7D = 4 .7300/L or, rewritten, when 7 = 500.6-i3/i4. 
According to this analysis, for 7 s 500.6'D/L4, the deflections 
are identically zero. This does not appear to be a physically 
reasonable result, especially for y>500.6*D/L4. The purpose 
of this paper is to clarify this situation. 

Using a nonlinear formulation, it will be shown that a linear 
analysis as used above is not suitable for problems of this type. 
Because of the nature of the nonlinearity included in the 
following analyses, exact closed-form solutions will be ob
tained which are very convenient for the planned study. Due 
to its analytical simplicity, at first, the membrane strip will be 
analyzed in detail. This will be followed by the analysis of the 
plate strip. 

The Membrane Strip 
Linear Analysis. The problem shown in Fig. 2 is analyzed 

first using the linear membrane formulation. Noting that 
w=w(x) and that the water load is, as before, q(x)=yw(x) 
the governing equations are 

Fig. 1 
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Fig. 2 

Fig. 3 

= 0 Nw"+ 7w = 

w(0) = 0 ; w(L): 

Q<x<L 

:0 
(6) 

where N is a prescribed constant axial force field and 7 is the 
specific weight of the liquid. Inothis standard formulation it is 
assumed (Rayleigh, 1945) that Nis very large, and that the ad
ditional axial forces due to q (x) are negligible compared to N. 

The formulation in (6) constitutes an eigenvalue problem. 
The condition for the existence of a nonzero solution is 

sinaL = 0 

where 

a = V7/yv. 

The eigenvalues are 
o 

a„L = nir n = 1,2,3, . . . . 

Since w(x) > 0 in 0<x<L, it follows that only 

is of interest. The corresponding eigenfunction is 

•KX 

(7) 

(8) 

W[(x) =s in (10') 

Thus, according to the above analysis, a nonzero w(x) may 
exist only when y/N=ir2/L2 and for y^Nir2/L2 the deflec
tion w(x) =0 , similar to the plate strip result discussed in the 
previous section. 

In an attempt to clarify this unreasonable result, next the 
problem shown in Fig. 3 is analyzed and then His set to zero. 
This problem corresponds to the actual physical situation 
when the membrane strip is subjected to a water layer of depth 
H and then this layer is poured off leaving the water in the 
space created by the deflected membrane, as shown in Fig. 2. 

Since the water pressure is now 

q(x)=y[H+w(x)], 

the governing equations are 

Nw" +yw= -yH Q<x<L 

w(0) = 0 ; w(L)=0 

The solution of this boundary value problem is 

(11) 

(12) 

Fig. 4 

w(x) .„[ 

Fig. 5 

1 — cosaL . 0 
cosoXH —3 sinax 

Sinai - ] • (13) 

For the case i/—0, the deflection w(x)-~0, unless also 
sinc?L/( 1 - cosaL) = 0, which leads for $L = ir to an undeter
mined w(x). Note that the condition sinctL = 0 is the result of 
the eigenvalue problem discussed previously. 

Nonlinear Analysis. To gain a better understanding of the 
analytical features of this problem a nonlinear analysis is con
ducted next. 

In the following analyses, the differential equations for the 
membrane strip are based on the equilibrium equations of the 
free-body diagram shown in Fig. 4 (with A/=0), the strain 
displacement relation 

exx(x)=u'(x)+— w'2(x), (14) 

(9) 
and Hooke's law. These equations are 

7V'=0 ; -{Nw')'=q 

(10) where 

N= = Eh(u' +—w'A. 

(15) 

(16) 

E is Young's modulus of the membrane and h is its thickness 
in the undeformed state. In Fig. 4, the x-axis coalesces with the 
undeformed reference plane of the membrane, (x, z) are 
Lagrange coordinates, and (u, w) are the components of the 
displacement vector u (x) of the reference plane in the x and z-
directions, respectively. 

The differential equations in (15) are nonlinear. However, 
since the first equation when integrated once yields 7V= con
stant, the second equation reduces to a linear ordinary dif
ferential equation for w(x). This analytical feature makes it 
possible to solve these differential equations exactly and in 
closed form (Marguerre, 1938). 

In these derivations, u(x) are assumed to be very small. 
Therefore, the expression for the vertical load 

q(x)=y[H+w(x)] (17) 

is retained, as in equation (11). Also, because the corre
sponding membrane slopes are very small, the horizontal com
ponents of the water pressure are neglected. 

With these assumptions, the formulation of the problem 
shown in Fig. 5 consists of the differential equations 
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\Eh\u'+—- w'2)w'\ + yw = 

[EH(W + 4 - W - ) ] ' = 0 

-yH 
• Q<x<L, (18) 

and the boundary conditions 

w(0) = 0; w ( L ) = 0 

u(0) = 0; M ( L ) = 0 

Integration of the second equation in (18) yields 

Eh(u' + — w ' 2 j = c o n s t = N 0 < x < L , 

(19) 

(20) 

N being the axial force field caused by the water pressure. 
Note that unlike in the linear formulation, there is no initial 
axial force field N. This case will be discussed later. 

Utilizing equation (20), the first equation in (18) reduces to 
a linear ordinary differential equation with constant 
coefficients 

Nw" + yw = -yH 0<x<L. (21) 

This equation is identical, except for the N, with the differen
tial equation in (12). The solution to this equation and the two 
boundary conditions on w in (19) is 

w(x) .-[. COSCOT + -
1 - cosaL 

sinfiZ, 
sincwc- 1 (22) 

where a=vy/N-
The as yet unknown N is determined next, using the second 

differential equation in (18) and the remaining boundary con
ditions in (19). 

The first integral, presented in (20), is a nonlinear differen
tial equation of first order. Since, at this point of the analysis, 
w (x) is a known function given in (22), equation (20) reduces 
to a linear differential equation for u (x). Namely, 

" , ( j c ) = ^ ~ 4 " w ' 2 ( x ) 0 < x < L . (23) 

Integrating this relation from 0 to L, noting that according to 
(19) «(0) = 0 and u(L) =0 , it becomes 

NL 1 ?L 

w'2(x)dx=0. (24) 
Eh 2 Jo 

Substitution of w(x) from (22) into equation (24) and per
forming the integrations results in 

EhH2 1 + cosaL 
= (25) 

2yLA (aL)3(uL-sm&L) 
This is the equation for the determination of a (or N=y/a2) 
for given E, h, y, L, H. 

Equation (22), in conjunction with (25), constitutes a solu
tion of the problem stated in (18) and (19). For completeness, 
u{x) may be obtained by integrating (23) from 0 to x. The 
result is 

u(x)=-
Nx 

~Eh 
jV2«)d*. (26) 

Next, consider the case when H-~0. For this purpose, equa
tion (25) is solved for H. The result is 

H= + 
( - ) 

27L4 1 + cosaZ, 
Eh (aL)3(aL-smaL) 

It is obvious that when / /—0, the condition 

cosaL = - 1 

has to be satisfied. This takes place for 

(27) 

(28) 

a„L = riT n= 1,3,5, . . . . (29) 

Because w(x) >0 , it follows from (22) that only axL = ir is of 
interest. For this case sina,Z, = 0 and w(x) in (22) appears not 
determined, like in the linear analysis of the previous section. 

However, for the present nonlinear analysis, / / w a s shown 
to depend on a (or vice versa). Therefore, substituting (27) in
to (22), and noting that 

lim [Hcosax] = 0, 

it follows that 

lim [w(x)]= lim \H 
1 - cosaL 

sinaL • sinax 

lim . 
2yL4 (I + cosaL) (I - cosaL)2 

Eh (5L)3(aL -s inaL)sin 2aL sincwc 

Since s i n 2 & L = l - c o s 2 a Z , = ( l - c o s a L ) ( l + cos&2,), 
cosa[L = cos7r= - 1, and sina,Z, = simr = 0, the above relation 
becomes 

lim [w(x)]=-
2L2 

•KX 
(30) 

H-O if v Eh L 

The corresopnding tensile force field is N=yL2/ir2. 
According to the above analysis, for the case H=0, a 

deflected membrane shape does exist for any 7 > 0 . 
It is of interest to establish if equation (30) may be obtained 

from the nonlinear analysis, by assuming a priori that H=0. 
For this case the equations in (18) reduce to 

Eh(u' +—— w'2) =const = jV 

Nw" +7>v = 0 
0 < x < L . (18') 

The boundary conditions are given in (19). The equations for 
w(x) constitute an eigenvalue problem. 

The general solution of the second equation in (18') is 

w(x) =AX sinox + J42 cosax (31) 

where 5 = V-y/Af. From the first boundary condition, vf(0) = 0, 
it follows that A2=0. The second condition results in 
sinSZ, = 0. It is satisfied by the eigenvalues 

a„L = mr «=1,2,3 

Since w(x) > 0 , only n- 1 is of interest. Thus, 

w(x) =AX sina,x, 

with &i = TT/L. The corresponding axial force is 

N=yL2/-w2. 

(32) 

(33) 

(34) 

The unknown A [ is determined from the remaining equations 
in (18') and (19), which reduce to equation (24). Substituting 
(33) into (24) and performing the indicated integration yields 

A,=-
2L2 

Eh 
(35) 

This agrees with the w(x) expression obtained previously, by 
subjecting the solution for H>0 to the limit process H— 0. 

To gain a better understanding of the above results, equa
tion (27) was numerically evaluated. The obtained graphs and 
the corresponding w(x) shapes are shown in Fig. 6. 

The results of the numerical evaluation of equation (30) and 
equation (22), in conjunction with equation (27), are shown in 
Fig. 7. 

In the linear analysis presented above, the membrane force 
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was TV ; an a priori prescribed large force field. In the 
nonlinear analysis that followed, the axial force was TV; a force 
field created by the lateral load. Next, these two cases are com
bined by first prestretching the membrane strip, by moving the 
right "wall" laterally by A, and then by loading it vertically, 
as shown in Fig. 8. 

The nonlinear formulation is the same as in (18) and (19), 
except for the last boundary condition, u(L)-0, which 
becomes 

u(L)=A. (19') 

For the following analysis it is convenient to set 

u(x)=u(x) + u(x); w{x) = w(x); TV=TV+TV, (36) 

where (°) are the quantities caused by prestretching only and 
( ) are the quantities caused when the water is added. 

The prestretching case, with w(x)=0 and w(x)=0, is 
solved first. For this case the equations in (18) and (19) 
become 

The solution is 

Ehu" = 0 0 < * < L 

«(0) = 0; u(L)=A 

A 
u(x) = x 

and the corresponding axial force is 

N=Ehu' =EhA/L. 

(37) 

(38) 

(39) 

The water is then added. From (18) and (19) it then follows 
that w(x) is governed by the boundary value problem 

Nw" + yw = ~yH 0<x<L 

vv(0) = 0; w ( L ) = 0 

The solution is 

r 1-cosaL . 
w(x) =H\cosax + : — - — sina*- 1 

L smctL 

(40) 

(41) 

N=N+N 

Fig. 8 

where a = *Jy/(N+N). 

Whereas TV is given in (39), TV is, as yet, unknown. It is 
determined from the second differential equation in (18) and 
the remaining boundary conditions w(0) = 0 and u(L) = A. In
tegrating once, and noting (16), this differential equation 
becomes 

Eh \u' +—— w'2) =const = TV, (42) 

« ' ( * ) = — — w'2(x). (43) 

or, rewritten 

TV 1 

~Eh 2~ 

Integrating equation (43) from 0 to L, and noting the boun
dary conditions on u, it becomes 

NL 1 rL 

A w'2dx = 0. (44) 
Eh 2 Jo 

Substituting (41) into equation (44) and performing the in
tegrations yields 

Eh 
H2=\l-A 

Eh 
(aL)2 1 + cosaL 

. (45) 
27L4 " 1/ ~ 7L3 v~ ' J (aL)3(aL-smaL) 

This is the equation for the determination of TV for given E, h, 
7, L, H, A. As expected, for A = 0 it reduces to equation (25). 

In the expression for the axial displacement component, 
u(x)=u(x) + ii(x), u(x) is given in (38), but the ii(x) is as 
yet unknown. It is determined by integrating equation (43) 
from 0 to x. Noting that H(0) = 0, this results in 

Nx 1 P* 
u(x)=—- —- w'HWZ. (46) 

Eh 2 Jo 
Then, according to (36) and (38), u(x)=u(x) - (A/L)x. 

Equations (41), (45), and (46) constitute the solution to the 
nonlinear problem shown in Fig. 8. 

Next, the case T¥—0 is considered. For this purpose, equa
tion (45) is solved for H. The result is 

H= + 
( - ) 

27L4 

~Eh 
1-A 

Eh 
(aL)2 1 + cosai 

(aLy(aL — smaL) 

(47) 

For the case when Eha2A/(yL) < 1 and H=0, the condition 
cosaL= — 1 has to be satisfied. This takes place when 

anL = nir /r = 1,3,5, (48) 

where a = ̂ Jy/(N+N). Because w(x)>0, only alL = ir is of 
interest. The corresponding axial force is N=N+N=yL2/ir2. 
Substituting (47) into (41), and forming the limit H-~0, we 
obtain 

2L2 I 7 r Ehir2! 
U m [ w ( x ) ] = _ J J L 1 - A — U 
H-O -Kl ^ Eh L 7L3 J 

TTX 

T (49) 
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Fig. 9 

Thus, when H=0, w(x) will be real for ana priori prescribed 
yL3/(Ehir2)>A, but when yL3/(Ehir2)<A, w(x)=0. 

Next, equation (49) is rewritten as 

w(x) 
1 - -

7TX 
(49') 

L y* 

where 7* = yL2/(Eh), and then numerically evaluated for 
A/L = l/20 and x = L/2. The result is shown in Fig 9. Also 
shown is the graph for A = 0. 

From Fig. 9, or equation (49'), it follows that for A > 0 
there exists a bifurcation point at y*r = it2A/L. Noting that ac
cording to (39) , A = NL/{Eh), it follows tha t 
7cr=A,Tr2/L2.This agrees with the first eigenvalue, equation 
(10), obtained from the linear analysis. This should have been 
anticipated, since in the nonlinear solution, for very small 
deflections, w(x) = 0 , the axial force Nis negligible compared 
to TV, which is the a priori assumption in the linear formula
tion presented in (6). 

From the above results it follows that, for the case H=0, 
when the membrane strip shown in Fig. 5 is not prestretched, 
deflections will take place for any 7 > 0 . However, when the 
membrane is prestretched by A, nonzero deflections will exist 
only when 7 * > T T 2 A / L , with a bifurcation point at 
7 * = TT2A/L. 

The Plate Strip 

Nonlinear Analysis. The linear analysis for 77=0 was 
presented in the Introduction. In this section this problem is 
analyzed using a nonlinear formulation. In order to simplify 
the analysis, symmetry is utilized and the origin of the coor
dinate system is placed in the center, as shown in Fig. 10. 

In the following analysis, the differential equations for the 
plate strip are based on the equilibrium equations for the free-
body diagram shown in Fig. 4, the nonlinear strain displace
ment relation (14), and Hooke's law. An alternative varia
tional formulation is given by Marguerre (1938) and Kerr and 
El-Aini (1978). Retaining the loading q(x)=yw{x), the 
resulting formulation consists of the two simultaneous dif
ferential equations 

Dwiv-\Eh(u'+—~ w ' 2 ) w ' l ' - 7 W = 0 

[En(u'+±W<2)[ = 0 
•0<x<L/2 (50) 

where 

D- Etf 
12(1 -v2) 

and the boundary conditions 

w'(0) = 0; 
w'"(0) = 0; 
K ( 0 ) = 0 ; 

w(L/2) = 0 
w'(L/2) = 0 
M ( L / 2 ) = 0 

(51) 

(52) 

Fig. 10 

The method of solution is similar to the one used previously 
for the membrane strip. Integration of the second equation in 
(50) results in 

Eh (u' H w'2) = constant = N. 

This expression reduces the first equation in (50) to 

Dwiv-Nw" -yw = 0 0<x<L/2. 

The general solution is 

w(x) =Blcoshpx + B2s'mhpx + BICOSKX + B4sim<x 

where 

(53) 

(54) 

(55) 

:}-MT+ /34±- x
2 

and 

X2 = 
N 

D 

(56) 

Differential equation (54) and the four boundary conditions 
on w in (52) constitute an eigenvalue problem. From the two 
boundary conditions at x = 0, it follows that 

Thus, 

B2 = 0; B4 = 0. 

w(x) = B jcoshpx + B3COSKX. 

(57) 

(58) 

The remaining two boundary conditions yield the two 
homogeneous algebraic equations 

(59) 
5 , cosh(pZV2) + 53COS(KL/2) = 0 

B,psmh(pL/2) - fi3Ksin(/cZ,/2) = 0 

The condition for the existence of a nonzero solution w(x) is 

KC0sh(pL/2)sin(KL/2) + psinh(pZ,/2)cos(«L/2) = 0; (60) 

the equation for the determination of iV. 
Utilizing the first equation in (59), the w(x) in (58) may be 

written as 

w(x) =BX cosh(px)-
cosh(pL/2) 

S(KX)J. —„.._W1. (58') 
cos(/cL/2) v J ; 

The unknown Bx is determined next using the second dif
ferential equation in (50), or its first integral in (53), and the 
remaining boundary conditions on u in (52). They reduce to 

NL fi/2 , 
— - J , w " * = 0. (61) 

Substituting w(x) from (58') into equation (61), performing 
the integrations yields Bx. Next, simplifying the resulting ex
pression in (58'), utilizing equation (60), yields 

w(x) = ( + ) 
4D[(pL)2-(KL)2] 

Eh$ 

- cosh(pZ,/2)cos(/oc)] 

[cos(KZ,/2)cosh(p.*) 

(62) 
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where 

$ = (KL)2cosh2(pL/2)-pL[pL + 2sinh(pL)]cos2(KL/2). (62') 

Next, equation (62) is rewritten for x = 0, noting that 
p2

 -K2 = X2 and w (x) > 0, as 

V 3 ( l ^ ) - ^ = + . 
h ( - ) 

XL[cosh(pL/2) - COS(KL/2)] 

71 
(63) 

It is then numerically evaluated, in conjunction with equation 
(60). At the start it is helpful to note that when w(x) =0, then 
N=0, and thus X = 0. Therefore, for w(0) = 0 and N=0, 
P = K = P and equation (60) reduces to 

cosh(/3L/2)sin(/3L/2) + sinh(/3L/2)cos(/iL/2) = 0. (64) 

This agrees with the result of the corresponding linear eigen
value problem. The first root of this equation is /3,L = 4.7300. 
The numerical evaluation proceeds by choosing /3L 
value> 4.73 and determining the corresponding XL-values 
from equation (60), noting (56). For each XL and (5L and the 
corresponding (pL, nL) pairs, the deflection w(0) is determined 
from (63). The results are shown in Fig. 11 and Fig. 12. It is of 
interest to note that for the range of the considered variables, 
$ > 0 . 

Conclusions 

The presented nonlinear analyses show that the prestretched 

/SL 

v>°v 

H = 0 

5 10 If 

XL 
Fig. 12 

membrane and the clamped plate, subjected to a fluid that fills 
the space created by the deflections, exhibit deflections only 
for "load parameters" larger than the respective bifurcation 
points. 

For example, the plate strip will not deflect when the "load 
parameter" @L = VyL4/L><4.73. However, when j3L>4.73, 
plate deflections will take place. This contradicts the result of 
the corresponding linear eigenvalue problem, presented in the 
Introduction, according to which w(x) ^ 0 will exist only for 
discrete values of /3L, with (/3L) l = 4.73 as the first eigenvalue. 
The nonlinear analyses show that the linear eigenvalue 
problem determines merely the bifurcation points. This sug
gests that the use of linearized analyses, for the class of 
problems under consideration (with H=0), is not admissible. 

The similarity of the obtained "load parameter" versus 
deflection curves, shown in Fig. 9 and Fig. 11, with those of 
the elastica theory for compressed beams is noteworthy. 

Also noteworthy is the shown relationship of N and TV 
usually ignored in the linear membrane analysis. 
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Elementary, Static Beam Theory is 
as Accurate as You Please1 

Starting with a solution of elementary beam theory and integrating polynomials in 
the thickness coordinate, we generate kinematically-admissible strain fields and 
statically-admissible strain fields whose average approximates the actual two-
dimensional strain field in an orthotropic beam to within a relative mean square er
ror of the order of magnitude of an arbitrary power of the ratio of the thickness of 
the beam to a characteristic wavelength of the elementary beam solution. 

Introduction 

Building on theories of Rehfield and Murthy (1982) and 
Levinson (1985), Rychter (1988) has presented a refined theory 
of orthotropic beams that accounts for the effects of 
transverse shear strain as well as normal and axial stress. From 
the solutions of his one-dimensional beam equations, Rychter 
constructs a two-dimensional stress field that approximates a 
certain exact solution of plane-stress elasticity to within a 
relative mean square error of O^tP/P), where 2H is the 
thickness (depth) of the beam and / is a measure of the 
wavelength of the beam theory solution. (If the external loads 
vary smoothly and not too rapidly, / may be replaced by the 
length, L, of the beam.) Rychter bases his error estimate on 
the hypercircle method of Prager and Synge (1974) and uses 
ideas first applied to classical plate theory by Nordgren (1971). 

In this paper, we show that elementary beam theory suffices 
to generate approximate, two-dimensional strain (and hence 
stress) fields of any accuracy, provided only that, at the ends 
of the beam, we demand no more detail than the shear stress 
resultant for the average vertical displacement and the stress 
couple or the gross rotation. To foreclose the objection that 
our conclusions do not apply to beams weak in shear, we 
analyze an elastically-orthotropic beam. 

The secret to obtaining a relatively small mean-square error 
in the two-dimensional strain field inferred from one-
dimensional beam theory is to construct statically-admissible 
strain fields and kinematically-admissible strain fields2 whose 
thickness distributions are nearly equal. In doing so, we find 
that once we start down this path, we can go as far as we 

please; specifically, we can construct approximate strain fields 
with a relative mean-square error of 0(//2 N / /2 N) or 
0(JH2N~1/l2N"[), where Nis any positive integer; for beams 
weak in shear, the relative error is shown to be 0(HL/P-)N. 
The rub, of course, is that at the ends of the beam the pre
scribed stresses or displacements must be compatible with the 
static or kinematic fields we construct. If the prescribed 
stresses or displacements are different, then a full-blown, two-
dimensional treatment of end effects must be considered and 
we are asking for information that no beam theory can supply. 
Thus, higher-order beam theories (and, by extension, higher-
order plate theories) are unnecessary in the sense that any in
formation that can be gleaned about two-dimensional stresses 
from a higher-order beam (or plate) theory can be wrung from 
elementary theory. 

Our analysis rests on the well-known but sometimes forgot
ten assumption that, in a beam, any given stress component 
varies much more rapidly through the thickness than along the 
length. If this assumption fails so does any beam theory; if this 
assumption holds, then the two-dimensional equilibrium 
equations of plane stress theory imply that, if the normal 
stress, cz, is O{p0), wherep0 is a constant representative of the 
magnitude of the external face load on the beam, then the 
transverse shear stress, T, is O(p0////), and the axial stress, <JX, 
is O(p0P/H2). These order-of-magnitude relations suggest an 
obvious scaling of the stresses; the stress-strain-displacement 
relations then imply an obvious scaling of the displacements. 

This work was supported by the National Science Foundation under grant 
MSM-8618657-02. 

A statically-admissible strain field satisfies the equilibrium equations and 
any stress boundary conditions; a kinematically-admissible strain field satisfies 
the compatibility conditions and any kinematic boundary conditions. In linear 
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by the ASME Applied Mechanics Division, March 20, 1989. 
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The Governing Equations 

Let Oxyz denote a fixed, right-handed Cartesian reference 
frame and consider a rectangular beam which, when 
undeformed, occupies the region Q<x<L, \y\ <B, kl <i / . 
For concreteness, we assume that the beam is built-in at x=0, 
stress-free sAx = L, that there are no body forces, and that the 
faces of the beam are under the tractions az{x,±H) 
= ±Vip0p(x/L), T(X,±H)=Q, where p is a dimensionless 
normal load. We further assume that the beam is elastically 
orthotropic, sufficiently narrow, and loaded sufficiently light
ly for linear plane stress theory to apply. 

The field equations consist of equilibrium, compatibility, 
and stress-strain relations. We satisfy equilibrium by introduc-
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ing the Airy stress function, F, which we assume satisfies the 
face traction conditions 

F,„(x,±H) = ±Vzp0p(x/L), F,„{x,±H) = 0, (1) 

where a subscript preceded by a comma denotes partial dif
ferentiation with respect to that subscript. We satisfy com
patibility by expressing strains in terms of the axial and nor
mal displacements, U and W. 

To incorporate the orthotropic stress-strain relations, we set 

tetme«-e* = W,x-E;HF,»-r>F,a) (2) 

Ay^yK-ys = U,z+W,x + G~iF,xz (3) 

AexmeK-4 = u,x-E;i(F,a-vEF,„), (4) 

where the superscripts K and S stand for kinematically ad
missible and statically admissible, Ex, Ez, and G are elastic 
moduli, v is Poisson's ratio, and 

E=EX/EZ. (5) 

According to the hypercircle error estimate of Prager and 
Synge (1947), 

\\e-Vi(eK + es)\\ = \\te\\, (6) 

where e is the actual strain field, 

llell2 = (l/2)f \ [ri(Exex + Eze
2
z+2vExexez) + Gy2]dxdz 

J — H JO 

(7) 

is the strain energy, and 

VT\F-
 (8) 

The actual strain field is kinematically and statically admissi
ble and the actual stress function satisfies the compatibility 
condition 

F,ZZZZ + 2EF,XXZZ+EF,XXXX = 0, (9) 

where 

E=Vi(Ex/G)-v{Ex/Ez). (10) 

Our aim is to show how, by starting from an approximation 
to F supplied by elementary beam theory and performing sim
ple integrations through the thickness, we may construct a 
refined approximation to Fwith a formal error as small as we 
please. With this approximation in hand, we then use (2) to (4) 
to construct approximate displacements such that the com
putable relative error, llAell/lle(0)ll, is bounded by as high a 
power of H/l as we please. Here, e<0) is the lowest-order ap
proximation to the statically-admissible strain field. The ac
tual relative error is llAell/llell but cannot be computed 
because e is unknown. 

Solution for the Stress Function 

In terms of the dimensionless variables and parameter, 

x ? F H 

L H p0L
2 L 

(9) may be rewritten as 

f,m = - (2e2Ef,m + e*Ef,iUi) (12) 

and the face traction conditions, (1), as 

/ , t £ ( { > ± l ) = ± ^ p ( € ) > / , { r ( € , ± l ) = 0. (13) 

Because we have assumed that the stress resultant and couple 
on the right end of the beam vanish, and because the dimen
sionless stress function, / , is arbitrary to within linear terms, 
we may, by integrating with respect to £, replace (13) by the 
alternative conditions 

/ ( { , ± l ) = = F ! 4 # w ( $ ) , / , r ( € , ± l ) = 0, (14) 

where 

m=j a-t)p(t)dt (15) 

is the dimensionless bending moment of beam 
theory—elementary or otherwise. 

We assume that the prescribed stresses or displacements on 
the ends of the beam are such that ax and U are odd in z while 
T and W are even in z. It follows from these restrictions and 
(14) that /must be odd in f. Hence, integrating (12) four times 
with respect to f, we have 

/=^(?)f+5(?)f3-2e2£[jo ($-t)m,t)dt\,ki 

(16) 

-(l/6)e4£[jo
f U-t)*m,t)dt\,im, 

and A and B are unknown functions of integration. Imposi
tion of the boundary conditions (14) reduces (16) to the 
integro-dif ferential equation 

f=f> + e2EIf,^ + e*EJf,mi, (17) 

where 

/ » = ( l /4 )#»( f ) f ( i a -3 ) , (18) 

U~t\ (^2t + 2-3t)f^,t)dt-2V a-t)M,t)dt, (19) 
Jo Jo 

and 

7/-(i/i2)r[ [?(2+t)-mi-t)2m,t)dt 
Jo 

-(l/6)[ (t-t)3M,t)dt. (20) 
Jo 

If we seek an asymptotic solution of the form 

/ = / » + e 2/D+ . . . . (21) 

then (17) yields the recurrence relation 

/„ =EIf,H-l)+EJf4$if\ n= 1, 2, . . . , / „ =0, n<0. (22) 
Applying (22) repeatedly and noting (15) and (18) to (20), we 
obtain a solution of the form 

fn=KnfiV = mV>Hli)PV"+iHt),n=l,2, . . . , (23) 

where /ww denotes the kth derivative of m with respect to £ 
and JP1*1 is a polynomial of degree k. In particular, 

jm= - ( l / 4 0 ) £ m " ( £ ) r ( l - r 2 ) 2 = ( l /40) J Bp( | ) f ( l - r 2 ) 2 , (24) 

and it may be readily verified that the approximation 
ff>) + e2yti) ieacis t 0 thg statically-admissible stress distributions 
given by Rychter's equations (29) to (31) (in the absence of ax
ial stretching). It may also be verified, using (14), (18), and 
(21), that/,j-j-(l,f) and —/, f f(l,f), the dimensionless normal 
and shear stresses at the right end of the beam, have a zero 
stress resultant and couple. 

Note from (12) that if E=0(e~1), i.e., if Vi(Ex/G) 
— v(Ex/Ez) =0(L/H), then (21) must be replaced by an ex
pansion in powers of e instead of e2, which we shall consider 
presently. Moreover, if E=0(e~2) or if E=0(e4), then the 
successive terms in (21) do not diminish and no beam theory 
holds: the problem is flat-out two-dimensional. 

Approximate Displacements 

Let 

U=(Lip0/ExH
2)u, W={L*p0/ExH

i)w. (25) 

Then, (2) to (4) take the form 

Lez = (p0/Ex)e-*(w,t + e2
vEf,n-e*Ef,u) (26) 

A 7 = (p0/Ex)e-3(u,t + wH+e2Ef,it) (27) 
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Ae, = (po/E^e-Hu^ -f,H + e2pEf,is), (28) 

where 

E=EX/G. (29) 

Our aim is to make llAell/II e<°> II =0(e2N). As lle<°'ll 
= O(e~2p0/Ex), we need to construct an approximate stress 
f u n c t i o n a n d d i s p l a c e m e n t f i e l d s u c h t h a t 
llAell = O(e2N~2p0/Ex). To this end, let 

/ = / " » + . . . +e2A,/(W> (30) 

u = u<f>+ . . . +e2Nu^ (31) 

w=w<°>+\ . . + e2Nw<NK (32) 

Guided by (26) to (28), and recalling that the/„ 's are known 
(and equal to zero if «<0) , we choose the coefficients in the 
expansions for u and w so that 

w,f"-»= -vEf,#-x>+Ef,£-*>, « = 1, 2 ,N+l (33) 

, " = 1,2 ,N+l (34) 

»£/,#-*>, n = l, 2 , . . . , N+l, (35) 

which reduces (26) to (28) to 

Ae, = (p0/Ez)e
2N-nvf,p - / , | f - ' > -e2/,Jf>] (36) 

«,f-')=-w,|«- »-£/, 

A 7 = ( / ; 0 / G ) 6 w - 1 / , ^ > 

Ae, = - ( p 0 / ^ ) e w - 2 [ / , ^ > - x / , # IP- D - e2"/,|?"] 

(37) 

(38) 

We may solve (33) to (35) in sequence. Thus, integrating 
(33) with respect to f, we have 

w("-i»=y„_,(?)-^/,p-2)+Je(Jo
r/("-3)^),£{, (39) 

where y„_! is a function of integration. Inserting (39) into 
(34), and integrating with respect to f, we obtain 

«<"-'> = - y ^ , ( ? ) f + ( ^ - £ ) / , | " - 2 ) 

•r -41 ̂ -'̂ H'̂ - (40) 

there being no function in integration as u must be an odd in f. 
The y„'s are determined by substituting (40) into (35). By (18) 
we find that, in particular, 

tf0*=-(3/2)/n(S), (41) 

which is just the basic equation of elementary beam theory. By 
(22), which relates/„ t o / ' " - 1 ' and/ ("~2 ) , we have, in general, 

y„_1 = C„_ 1 +£»„_ l ?- J^ [6Etf"~2KU) 

+ ViE(2 + t)\l-t)2f,^(U)]dt, 
« = 2, . . . , N+l, 

(42) 

where Cn_x and D„_{ are constants of integration determined 
by the displacement boundary conditions at the left end of the 
beam. For example, if the vertical deflection and rotation of 
elementary beam theory are identified with the average ver
tical deflection and average cross-sectional rotation of two-
dimensional plane-stress theory, then, if the beam is built in at 
the left end, 

JQ w(0,t)dt= Jo flu(0,{Vr=0. (43) 

By (31), (32), and (39) to (42), these conditions translate into 
the well-known boundary conditions of elementary beam 
theory, 

y0(0) = fo(0) = 0, (44) 

plus explicit (but elaborate) formulas for C„_j and D„_l that 
we shall not state. 

Referring back to (36) to (38), we note that the error in A7 is 
smaller than the errors in Aez and Ae,, i.e., our scheme 
delivers kinematically and statically-admissible shear strains 

that are closer to one another than necessary to achieve a 
relative error in the energy norm of 0(t2N). On the other 
hand, if we let n go only up to N and not to N+ 1 in (34), then 
(37) is replaced by 

Ay=(p0/G)e2N-1f4P-», (45) 

and the relative error in the energy norm is only 0(e2A,_1)> the 
major contribution coming from (45) and not (36) and (38). 

General expressions for the difference between the 
kinematically and statically-admissible strains in terms of 
derivatives of m can be obtained by substituting the right side 
of (23) into (36) to (38): 

Aez= (p0/Ez)e
2N-2[m^(i)Qz

2N^ (f) 

_e2w[2/V+2]p(2N+3) (£.}] 

(2N+2] (f) 

(46) 

(47) Ay=(p0/G)e2N-[mVN-iHZ)Q 

Aex=(p0/Ex)e
2N-2[m^(^)Qx

2^^ (f) 

_e2p m[2/V+21p{2/V+311 ( (43) 

where Qz
k], Qw, and Qx

k] are polynomials of degree k. 
These expressions prove convenient in the following deter
mination of the computable relative error. 

The last essential piece of our analysis is to define /, the 
characteristic wavelength of the problem. If m is differentiable 
on [0, 1], then, roughly speaking, the "wavelength" 
associated with m is the smallest length / such that 
dm/d% = 0{mL/l) on [0, 1]. As we are dealing with mean 
square errors and as the integrands in the error estimate in
volve high derivatives of m, we instead define the 
characteristic wavelength of m by 

(4-) -71 
f m2d£ 
Jo 

j ' (mun)2dl 

(49) 

With this definition and Schwarz' inequality, we find for the 
first term in the expression for llAell, upon substitution of (48) 
into (7), 

\H
H\L

or,Ex(Aex)
2dxdz 

<2r,(HLp2
0/Ex)(H/l)4Ne~A\ m2d^\ [\Qx

2N+lU 

+ v2(H/l)2\pUN+^\]2dl (50) 

By (7) and (18), the analogous term in the expression for lle<0) II 
is 

\"_H\L
Q vEAef>)2dxdz 

= Q/2)r,{HLp2
0/Ex)t~* \ ' m2dt \ ' f2(f- 3)2df. (51) 

Jo Jo 
A similar analysis of the other terms composing llAell and 
lle<°> II shows that IIAe 11/11 e<°> II =Q(H2N/l2N). 

Beams Weak in Shear 

Our analysis thus far has assumed that E=0(1). If the 
beam is weak in shear (as might be the case in a composite 
beam), we take 

Ex/G = 2ke~l, k = 0{\). (52) 

In this case, the integro-differential equation, (17), for the 
dimensionless stress function takes the form 

f=fV> + t(k-evE)If,x+eiEJf,im. (53) 
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The assumed asymptotic expansion (21) is now replaced by 
/ = / o ) + e / i ) + _ _ _ ( 5 4 ) 

which leads, in place of (22), to the new recurrence relation 

fn=kIf,$-»-vEIf,&-2) 

+ JMnm\ « = 1, 2, /„=0, «<0. (55) 
Of the three equations for the incremental strains, (27) 
becomes 

Ay=(p0/Ex)e-HuH + w,i+2ekf,i() (56) 
while (26) and (28) remain unchanged. 

We now approximate/, u, and w by finite series of the form 
/ = / 0 , + e/1)+ . . . +eNfN\ etc., so that (33) to (35) are 
replaced by 

w,p-"= -vEf^-^+Ef^f^, n = l, 2, N+2 (57) 
w,f - 1 »=-w, |" - 1 ) -2^/ , |p 2 ' , « = 1,2, . . . , JV+1 (58) 

u,t"-i)=f,ft-»-vZf,ft-3>, n = l,2,...,N. (59) 
This leads, in place of (36) to (38), to incremental strains of the 
form 

Aez = (Po/Ez))e
N-2[uEf,^ + O(e)] (60) 

Ay = 2(p0/Ex)keN-2/,^ (61) 
Aex = (Po/Ex)e

N-2[f,lP + O(e)]. (62) 
From (52), (61), and (62) we see that 

nEx(Aex)
2 + G(AyY = (r,pl/Ex)e

2N~*<J,lP)2[l + 0(e)], (63) 
with a similar conclusion with Ez and Aez in place of Ex and 
Aex. Thus, if we compute terms up to and including/<N), the 
dominant contribution to llAell will come from Aex and ez. 
Because \\e^\\2 = O(HLp2

0/Ex)e-4ll
0m

2d^ as before, and 
f(N) =0(m^, it follows that llAell/lle<°>ll =0(HL/l2)N. 

Conclusions 

By a straightforward analysis that may be extended in an 
obvious way to plates, we have shown that if one wishes to in
fer approximate two-dimensional strain fields, starting from 
beam theory as a base, then it is sufficient to start from 
elementary beam theory. This conclusion, which holds even 

for beams weak in shear, is based on the Prager-Synge hyper-
circle method which assumes that the prescribed displacement 
or stress boundary conditions at the ends of the beam have 
same thickness distributions, respectively, as do the 
kinematically or statically-admissible fields we construct. If 
the boundary conditions do not satisfy this constraint, then 
there will be end effects and a full two-dimensional treatment, 
such as given by Gregory and Gladwell (1982), is unavoidable 
if we want accurate stresses everywhere. On the other hand, as 
emphasized by Koiter (1971), one rarely knows the exact 
thickness distribution of the stresses or displacement at the 
edge of a beam, except if the edge is traction free. In the face 
of such ignorance, a procedure such as we have outlined is the 
best one can do. 

After the present work was finished, Dr. Rychter kindly 
brought to our attention a brief note by Donnell (1952) in 
which he presents expansions for the two-dimensional stresses 
in an isotropic beam loaded by arbitrary pressures on the up
per and lower faces. If these pressures are taken to be equal 
and opposite, as we have assumed herein, then the stresses 
which follow from our asymptotic expansion of the dimen-
sionless stress function, equation (21), agree with Donnell's 
formulae. Our contribution consists of modifying this expan
sion for orthotropic beams weak in shear and in presenting ex
plicit, computable error estimates for these asymptotic 
aproximations. 
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A Mechanical Model for Elastic 
Fiber Microbuckling 

A two-dimensional mechanical model is presented to predict the compressive 
strength of unidirectional fiber composites using technical beam theory and classical 
elasticity. First, a single fiber resting on a matrix half-plane is considered. Next, a 
more elaborate analysis of a uniformly laminated, unidirectional fiber composite 
half-plane is presented. The model configuration incorporates a free edge which in
troduces a buckling mode that originates at the free edge and decays into the interior 
of the half-plane. It is demonstrated that for composites of low volume fraction 
(<0.3), this decay mode furnishes values of buckling strain that are below the 
values predicted by the Rosen (1965) model. At a higher volume fraction the buckl
ing mode corresponds to a half wavelength that is in violation of the usual assump
tions of beam theory. Causes for deviations of the model prediction from existing 
experimental results are discussed. 

1 Introduction 

A problem that has received much attention but moderate 
success is the prediction of compressive strength of fiber com
posites. Dow and Gruntfest (1960) were apparently the first to 
identify fiber buckling as a viable mode of compressive failure 
in composites. Their work was followed by that of Fried and 
Kaminetsky (1964) and Leventz (1964), who addressed ex
perimentally and theoretically the question of compressive 
strength. In these investigations, an empirical factor was used 
to obtain a correlation between the experimentally and 
theoretically predicted values of compressive strength. In 
1965, Rosen (1965) presented an analysis addressing the ques
tion of microbuckling which was devoid of any empiricism 
and laid the foundation for much of the work that was to 
follow. With a few exceptions, noted later, the analytical 
research work carried out in the past 20 years is based on the 
model by Rosen (1965). Due to lack of space and because an 
excellent literature survey on fiber microbuckling exists 
(Shuart (1985)), a discussion of the various contributions that 
have enhanced our understanding of microbuckling will be 
omitted here. Instead, the discussion will be limited to those 
aspects that are fundamental in clarifying the state-of-the-art 
of the subject. The interested reader is referred to the 
references at the end of this chapter and the review by Shuart 
(1985), in particular, for a complete and up-to-date account. 

The Rosen (1965) model for microbuckling addresses the 
problem of fiber buckling in glass fiber/epoxy laminates 
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under compressive loading. The model presented, which is 
two-dimensional, treats the fiber layers as plates supported by 
an elastic matrix (offering lateral support to the fibers at 
buckling). When the unidirectional composite of infinite ex
tent undergoes failure, Rosen envisages two possible modes of 
failure which he calls the extension and shear modes. In the ex
tension mode, the matrix material is predominantly in exten
sion and adjacent fibers deform 180 deg out of phase with 
each other, as shown in Fig. 1. In the shear mode, adjacent 
fibers deform in phase, and the matrix material is 

Shear mode R I M 

Extensional mode; R E M 

Fig. 1 The configuration studied by Rosen (1965) 
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X,u 

fiber 

mat r ix 

Y,v 

Fig. 2(a) The single fiber composite 

Q + gdX 

P~(P'+ ¥zdx) 

Fig. 2(b) Isolated element of buckled fiber 

Fig. 2(c) Matrix configuration at buckling 

predominantly in shear. Using an energy method to obtain the 
buckling load, Rosen approximated the buckled mode shape 
of the fibers to be 

v^ . / n n x \ 
v= l,ansm[-j-). 

Here, L/m = \, the buckle wavelength, as indicated in Fig. 1. 
In evaluating the contribution to the potential energy from the 
matrix at buckling, he assumed the strains in the matrix to be 
independent of y. This amounts to approximating the 
displacements in the matrix to vary linearly in y. Next, con
sidering the bending energy contribution of the fiber and the 
work done by the in-plane compressive loads on the fiber, he 
obtains the following critical values for the extensional and 
shear modes: 

Extensional Mode: 

. = 2V, 
y p p -\ >/i 

-3d-Vf) 

V h /< 
4 UX-Vj /> 

3K, / 

Shear Mode: 

\-Vf 
+ 0 (Of)') 

(i) 

(2) 

(3) 

V h / c 
» 1 . 

Here , acr = critical compressive stress at buckling, 
Em = Young's modulus of the matrix, Ef = Young's modulus 
of the fiber, Vf = volume fraction of fibers, h = thickness of a 
fiber plate, and X = wavelength of the buckled fiber. 

Notice that in the shear mode the critical value of a occurs 
for A;>> h. Thus, unlike the extension mode in which a critical 

buckle wavelength can be evaluated, no such value \cr exists in 
the shear mode. The buckling "load" is continuously depen
dent on the wavelength X. 

A second viewpoint regarding the mode of failure in com
pression is referred to as fiber kinking. Observations on kink
ing failure go back as far as 1949 when Orowan (1942) ob
served that single crystal rods of Cadmium collapse under 
uniaxial compression into peculiar kinks if the (0001) glide 
plane is nearly parallel to the axis of compression. It is fre
quently useful to use four axes (thus four Miller indices), three 
of them co-planar, to describe the crystal planes for hex-
agonally close packed (HCP) crystals. The (0001) for HCP 
Cadmium is the basal plane. The advent of fibrous materials 
has rekindled interest in the subject, and in recent years, fiber 
kinking as a viable mode of failure has been observed by, 
among others, Weaver and Williams (1975), as well as other 
researchers (Dale and Baer, 1974; Robinson et al., 1986, 
Evans and Adler, 1983; Chaplin, 1977). Judging from the ex
perimental evidence available, it appears that the formation of 
compression-induced kink bands is closely associated with the 
existence of a preferable glide plane in the direction of com
pression. Budiansky (1983) analyzed kinking by introducing 
inelastic behavior in the matrix and explained the large scatter 
in kinking strengths in terms of the composite's sensitivity to 
initial fiber misalignment. He presents in Budiansky (1983) a 
result for the compressive strength of the composite which 
depends on the matrix yield stress in shear and on the initial 
fiber misalignment. However, the experimental evidence 
available (Fried and Kaminetsky, 1964; Leventz, 1964; Hahn 
and Williams, 1986; Sohi, Hahn, and Williams, 1984; Hahn, 
Sohi, and Moon, 1986; Lager and June, 1969) does not sug
gest that kinking failures are limited to composites that permit 
inelastic matrix behavior. 

More recently, Hahn and Williams (1986) and Sohi et al. 
(1984) have reported experimental results related to compres
sion failure in straight fiber-laminated test specimens. In these 
studies, it was repeatedly observed that failure of the fibers in 
plies aligned along the loading direction (0 deg plies) 
originated at a free edge and subsequently propagated into the 
interior of the specimen, precipitating a global failure of the 
test specimen. This observation is consistent with the findings 
of Waas and Babcock (1989) as regards the origins of the 
failure process. 

In this paper we consider a simple mechanical model that is 
capable of demonstrating the origins of compressive failure at 
a free edge. To do so, the problem of a laminated half-plane 
subjected to a uniform far-field compression parallel to the 
surface of the half-plane is considered. Despite the fact that 
experimental observations strongly suggest that fiber-
microbuckling originates at a free edge, a model configuration 
that allows incorporating a free edge has not been examined 
with the view of understanding microbuckling. 

In developing the analysis, a simple example is considered 
first in which a single fiber perfectly bonded to a half-plane is 
subjected to compression. This is done for two reasons: first, 
to understand the effects of boundary conditions that are ap
plied at the interface of the different materials, particularly 
from a buckling standpoint, and secondly, to assist in develop
ing the more elaborate analysis that follows, where a more 
realistic configuration for the composite is chosen in which the 
entire half-plane is a unidirectionally laminated medium. 

(4) 2 Problem Formulation 

2.1 An Example Problem. Consider the idealized, single 
fiber composite of unit thickness in the z-direction, shown in 
Fig. 2(a). For carity of presentation, upper case letters have 
been used in the figures for coordinate axes corresponding to 
their lower case counterparts in the text. The composite is sub-
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jected to a uniform compression (P/h) per unit thickness nor
mal to the x, /-plane of the figure. The relatively "soft" sup
porting medium (matrix) acts as an elastic foundation offering 
lateral support to the fiber. For convenience, a composite of 
infinite extent in the x-direction occupying the space 0 < / < oo 
is considered. Standard notation, such as " E " for Young's 
modulus and v for Poisson's ratio is used with the subscripts 
" / " and "m" to denote properties Of the fiber and matrix, 
respectively. The analysis is carried out for composites typical 
of those in the aerospace industry where E y » E m . Conse
quently, the prebuckling deformation of the composite is one 
of uniform contraction with the compressive load borne essen
tially by the fiber. Bernoulli-Navier beam theory is used to 
describe the fiber, while the matrix is modeled as a linearly 
elastic, homogeneous, and isotropic medium. The prebuckled 
state for the fiber (a positive sign associated with compression) 
is described by 

Bjh 
v = 0. (5) 

Next, the governing equations for the fiber in the buckled 
state are developed. With reference to Fig. 2(b), consider an 
element of the fiber infinitesimally removed from the straight 
configuration. It is cut by planes that were parallel to the y, z 
plane at x and x + dx in the undeformed state. These sections 
remain plane and normal to the deformed middle surface. 
With the assumption that rotations are small compared to uni
ty, force equilibrium, and moment equilibrium in the x, y 
plane results in 

dQ 

dx 
+ o-P-

dzv 

~dF~ 
= 0 

dp' 
dx 

+ q = 0 

cP-M h dq dQ 
= 0. 

(6a) 

(6b) 

(6c) 
dx2 2 dx dx 

Here, p' (per unit length in the ^-direction) is the change in the 
axial force P at buckling, M is the bending moment in the 
fiber, and v the deflection of the fiber in the /-direction, a and 
q are the interface tractions develped at buckling because the 
fiber and matrix are bonded at their common interface. In 
writing equation (6a), the product p' flv/dx2, which is of 
second order, has been omitted. The buckling under investiga
tion is infinitesimal. Equation (6b) can be further simplified 
by noting that 

dun 
--hE 'f dx 

(7) 

where u0 is the axial displacement of the fiber due to buckling. 
Also, 

cPv 

Combining (6) through (8), the following is deduced 

p , d*V 
+ P 

(fv 

dx2 

h dq 

T~dY =o 

q + hE, 
<Pun 

= 0. (9) Df^F2 

Continuity of displacements at the common interface re 
quires 

h dv 
h - um I 

dx ' '>=<) 

" '«ly = 0 
(10) 

Periodic perturbations in u(x) and v(x) of sinusoidal form 
about the trivial solution (5), with an arbitrary wavelength, X, 
are investigated. Then, one seeks the critical value of P re
quired to maintain this disturbance; q and. a are obtained in 
terms of the fiber displacements v and w0. This requires the 
solution of the elastic displacement equations of equilibrium 
in the matrix. 

2.2 The Matrix Problem. With reference to Fig. 2 (c), it is 
necessary to solve 

d2um ' d2u,„ d2v„, 
2 - ^ - +(1-Vm)—-2- +(\ + vm) - ^ - =0 dx2 

d2v,„ 
+ (!-",„) 

dy2 

d2v„, 
dx2 + d + " m ) 

dxdy 

d2u„, 
-0, (11) 

dy2 ' v" ' " " dx2 -••"" dxdy 

which are the elastic displacement equations of equilibrium 
with the approximation of plane stress in the x, /-plane, sub
ject to the following boundary conditions: 

at / = 0, um = t/cosax 

v„, = Fsinax 

a s / — oo, um-~ 0 

tfM—0. 

(12a) 

(126) 

Here, a = 27r/X and U, Fa re arbitrary constants. In writing 
(12), the form of the buckled displacements of the fiber is 
assumed as 

WQ/- = Bcosax 

vf = Asmax. 
(13) 

(14) 

The solution of (11) proceeds in the following manner. Let 

um = \j/(y)cosax 
vm =<t>(y)smax. 

Using (14) in (11), and elimination of <Kor $), results in the 
following ordinary differential equation for \{/(4>) 

\PIV-2a2i,H + a4t = 0, (15) 

where ( ) ' = d/dy; a similar equation results for </>. 

The solution of (15), subject to the second condition in (12), 

^ = ( C 3 / + C 4 ) e -^ 

and similarly, 

4>=(D,y + DA)e~"y 

Here the Cs and £>s are related by 

D3[ ( 3 - * m ) 

(16) 

C.=- - I " — 
L (i + i 

-D. 
(17) a I (1 + vm) . 

C3 = -D3. 

Equation (17) is obtained by substituting (16) into (11). Incor
porating the first of (12), one arrives at 

D3 (3-vm) 
um(x,0) = 

L a (l+vm) 
v,„(x, 0) = D4sinax 

-D, cosax 

with 

jj,=a U + a V. 
(3-vm) (3 + v,„) 

Next, the surface tractions q and a are computed; 

(18) 

(19) 

T =G 
~du„ dv„ 

dy dx J 

= Gm [ip' + o l eosa* . 
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Thus, 

,(x,0) = q(x,0) = Gm^2a 
(3-«) 

4a 

(3-I'm) 
The normal stress 

E, 

U 

dv„, du„ 
+ v„ 

(20) 

dx 

(1 - O 
[<£' — v,„a\p]smax. 

Thus, 

CT^,(A:, 0) = a(x, 0) = 

" 7 r r - % 7 r &V~ ^ - "»)lsin«wf. (21) 

(l + vm)(3-vm) 

Using (13) and (12a), the following is obtained: 

V=A 

2 

Substituting (20) through (22) into (9), the following system of 
equations results 

(al-e0)A + blB = 0 

a - p2 I 2fl 
1 12 P(l + vm){3 

2(1+ !»„) (3-! -„ , ) 

p(l + y m ) ( 3 - j / , „ ) 

6 _ M 

"' ( 1 + 0 ( 3 - ^ ) 

i ** 
p(l + ' ' m ) ( 3 - J ' m ) 

a2A + b2B = 0 

-vm) 2(l-Pm)(l + vm) 

M(l-"m) 

|0(3"*',„)(l+*'m) 

+ 1, 

(23) 

and the following nondimensionalizations have been used 

2-Kh 
p — ha= —-— 

(24) 

= 0. 

For nontrivial solutions for A and 5 , one requires 

( a , - e 0 ) 6, 

«2 * 2 

The condition (25) implies that 

£ o = f l l + f l 2 (A_) , 

(25) 

(26) 

2.3 Results and Discussion. To illustrate the results, the 
material properties listed in Table 1 have been chosen. These 
correspond to the two fiber/matrix systems, designated as 
T300/BP907 and IM7/8551-7. From now on, these shall be 
referred to as BP907 and IM7, respectively. 

2 B.B5-

< 
H B.B4-

BP907 

HALF WAVE LENGTH (I) 

Fig. 3 Variation of e0 with nondimensional half wavelength /. Com
parison of predictive models; curve (a) is Gough (1939), curve (b) is 
Reissner (1937), and curve (c) is the present; dashed line—IM7, solid 
line—BP907 

Table 1 

BP907 IM7 
c / 74.2 79.3 

vm 0.38 0.33 
Figure 3 shows the variation of e0, with the nondimensional 

half wavelength I(l=\/2h). In this plot, the present results 
(solid curve for BP907 and dashed curve for IM7) are com
pared with those of two other models. The first one, Gough et 
al. (1939), is obtained by neglecting the presence of the inter
face shear traction q. In that calculation, instead of the con
tinuity conditions, equations (10) are replaced by the require
ment that the surface of the matrix (y = 0) is constrained to 
satisfy 

. = 0 
(27a) 

In the second model (Reissner (1937)) the surface of the 
matrix is taken to be free from shearing stress. This amounts 
to satisfying (at y = 0) 

= 0. 
{21b) 

In computing the critical strain, the models of Gough (1939) 
and Reissner (1937) do not account for the interface shear 
traction developed at buckling. From Fig. 3 the minimum 
values of e0, such as those corresponding to point A, are iden
tified as the buckling strain. 

The manner in which the buckling strain in affected as a 
function of the ratio of Young's moduli of the constituents 
Ey/Em is shown in Fig. 4(a) . The corresponding critical 
wavelength variation is depicted in Fig. 4. Notice that a large 
disparity in Young's moduli between fiber and matrix 
( E / » E m ) leads to a gradually decreasing value of critical 
strain, with the rate of this decrease diminishing as the limit 
E //Em-«oo is approached. Further, as expected, the agree
ment between the present calculation and those of Gough et 
al. (1939) and Reissner (1937) improves as this limit is ap
proached. Also, as E^/E,,, — oo, by holding Ey constant and let
ting Em —0, which corresponds to a gradual disappearence of 
the matrix, the Euler formula, ecr = p2/\2, is obtained from 
the present result (26). Next, consider the case of Ey/E^ — 1 . 
Here, there is a noticeable difference in the predicted values of 
e0 between the three calculations. However, in the range 
E / / E m < 2 0 , the predicted critical nondimensional half 
wavelength / is less than 5. Thus, in this situation where the 
critical wavelength becomes comparable to the thickness of 
the fiber, use of a one-dimensional theory, such as technical 
beam theory in describing the fiber, is inappropriate. The ef
fect of Poisson's ratio on the buckling strain and critical half 
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Fig. 4(a) Variation of critical t0 with ratio of Young's moduli E,/E„ 
curves (a), (b), and (c) as in Fig. 3 

Fig. 4(b) Variation of critical half wavelength (lcr) with ratio of Young's 
moduli E,/Em; curves (a), (b), and (c) as in Fig. 3 

wavelength can be inferred from Fig. 5. Here, it is seen that 
when vm = Q (a condition which constrains the matrix to 
behave such that ey = ez = 0 at buckling), the buckling strain is 
higher than for cases vm > 0. This is to be expected because the 
constraining condition "stiffens" the matrix at buckling. 

In summary, it is observed that the effect of the interface 
shear traction occurring at buckling is to introduce small 
periodic fluctuations in the axial thrust acting on the fiber 
(denoted by p' in the formulation). Further, this shear trac
tion also introduces bending moments because of its eccen
tricity with respect to the center line of the fiber. These effects 
have been included in the present formulation. 

The stresses in the matrix associated with the sinusoidally-
buckled form of the fiber contain the multiplier e~ay, and thus 
diminish as y increases. At a sufficiently large value of y, they 
may be regarded as negligible. Thus, the coefficient 'a'cr in the 
exponent characterizes a boundary layer depth into the matrix 
to which any surface disturbance can be felt. The quantity 
"ay" can be rewritten as, 

<xy = 
2TT 

•y = 
•K 

T •(•f)-
(28) 

Figure 4(b) shows a plot of /„ against the ratio E / /E m . It is 
seen that for a "soft" matrix (Ey/Em =500, say), the surface • 
disturbance is felt to a larger depth than for a "hard" matrix 
(E / /Em = 50, say). This result can be interpreted in the light of 
more realistic composites. Suppose a unidirectional laminated 
composite contains several fibers. Then, so long as the fiber 
spacing is larger than a certain minimum value, the interaction 
between adjacent fibers will be negligible, and the one-fiber 
model presented here can be used as a measure of the com
pressive strength of the composite. However, in order to max-

.4 a.6 B.S 1 

POISSON'S RATIO vm 

Fig. 5(a) Effect of Poisson's ratio on critical strain c0; curves (a), (b), 
and (c) as in Fig. 3 

10-1 

s 
H 
O 

H 

I 
fa 
< 
ffi 

5~i ' ' ' ' I ' ' ' ' I ' ' ' ' i 
0.2 B.4 0.B 

POISSON'S RATIO um 

Fig. 5(6) Effect of Poisson's ratio on critical half wavelength /-,; curves 
(a), (b), and (c) as seen in Fig. 3 

imize the specific stiffness of the composite (the E/p ratio), 
one needs to attain a high volume fraction of fibers. This 
makes the spacing between fibers (expressed more readily in 
terms of fiber volume fraction Vf= (h/h + 2c) small com
pared with h. Typical values of Vf range from 0 .5-0 .6 for 
fiber-reinforced laminated systems that are currently in use. 
Thus, it is informative to address the more general problem of 
a laminated medium containing many fibers under com
pressive loading (Fig. 6 (a ) ) . There are several ways to ap
proach this problem. In the spirit of the previous analysis, this 
can be modeled as a problem of a single fiber resting on an 
equivalent orthotropic medium (the "smeared" foundation). 
However, unlike before, the prebuckling stress state in the 
"foundation" is quite different. No longer can it be assumed 
that the totality of the load is borne by the surface fiber alone. 
Indeed, one is compelled to consider a problem in which the 
"foundation's" initial stressed state on the buckling of the 
surface fiber has to be accounted for. Such a consideration 
can pose difficulties in solving for the displacements of the 
foundation in the presence of the initial stress, since now a 
two-dimensional stability problem for the foundation 
itself has to be considered. 

Another approach to the problem is to consider individual 
fibers separately, and account for the interaction effects be
tween adjacent fibers by analyzing the deformation of the 
sandwiched elastic matrix at buckling. It is this approach that 
is followed in the next investigation. 

3 Buckling of a Layered Medium 

3.1 Problem Formulation. The configuration being 
studied is shown in Fig. 6(a) . Here, the end compression is in-
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dicated as being carried entirely by the fibers. To verify this 
assumption, let P (per unit length in the z-direction) be the ap
plied load to a "unit cell" of depth {h + 2c) in the prebuckled 
state. Then, the axial compressive stresses in the fiber and 
matrix are 

n 1 + 
2c Em 

h E , 

with 

2c 

~~h 

2c\ 

" ( ^ ) -
P/h and °xf » °x.r 

» E „ , which is the case in the 
so long as These reduce to axf 

( E / / E m ) » ( ( l - K / ) K / ) a n d E / 

present investigation. Thus, the prebuckled state of the com
posite is as described by (5), with the end compression load 
carried entirely by the fibers. The matrix acts as an elastic 
foundation. Next, consider the composite in the buckled con
figuration (Fig. 6(b) and 6(c)) . Then, considering the 
equilibrium of a typical fiber, the following set of equations 
result for the surface fiber (N= 1) and the nth fiber (N=n), 
respectively. (Here an extra subscript n designates quantities 
associated with the nth fiber.) 

Surface Fiber. 

d*v. 
E ' 7 - d? 

nth Fiber. 

dAv„ 

+ P-
d2v1 

dx1 

h dqUl 

dx 
(29) 

qu. +nE, = 0. 

f dx* 
+ P 

CPVn 

• dx2 '\ °L„ 

h d 

T~dJ 

[<?"„ 

K+^„_,]= o 
(30) 

-< fc - i 1 + * * ' -de 
= 0. 

In order to proceed with the solution of (29) and (30), the 
shearing and normal tractions (q, a) developed at the 
fiber/matrix interface at buckling have to be determined. This 
can be done by considering the deformation of a typical 
matrix layer sandwiched between any two fibers. Thus, isolate 
the nth and (n + l)st fibers and the matrix in between (Fig. 
6 (c)) . To proceed, solving for the displacements in the matrix 
layer, some boundary conditions have to be imposed at the 
fiber/matrix interface. As before, sinusoidal perturbations in 
u(x), v(x) are investigated about the trivial solution (5). 
Thus, for the nth fiber it is assumed, 

"o« = ^ c o s a * 

v„ — V„smax. 
(31) 

Traction free ̂  

-Y" 1 
t 
2c i y 
1 i h 

*n, 

fiber 

matrix 

Fig. 6(a) Configuration for unidirectional laminated composite 

Fig. 6(b) Buckled configuration of laminated composite 

Fig. 6(c) Isolated portion of buckled configuration; nth, (n + 1)st fibers 
and sandwiched matrix 
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[/„„, V„ are the unknown amplitudes of the perturbations 
u„ (x), v„ (x), respectively, of the nth fiber. 

Next, the deformation of the matrix strip between the nth 
and («+ l)st fibers is considered. With reference to Fig. 6(c), 
it is required to solve (11) in the matrix subject to the following 
boundary conditions 

«th fiber/matrix interface 

/; dv„ 
~2~~dx~ 

(32a) 

(n + l)st fiber/matrix interface, 

u, 
h dv 

0(n+l) " 
(n+1) 

dx 

J{n+l) 

*m \y = c 

yn+V 

h - Un 

T ' (32b) 
h = V<n\y = c-
2 

Notice that by confining attention to the nth and («+ l)st 
fibers and the sandwiched matrix in between, it is possible to 
generate the governing equations for any fiber. The interface 
continuity conditions for displacements are completely 
specified by (32) in that, at every fiber/matrix interface, one 
of the conditions (32) will apply. 

The solution of (11) subject to (32) is, 

um (x, y) = (C,coshcy + C2sinhay + C^ycoshay 

+ C^sinhcyjcosax 

vm{x, y) = (Z),coshoy+ .D2sinhay + -D3.ycosha)' 

+ D4ys'mhay)smax, 

(33) 

with 

a \ 1+v m ' 

a \ 1 + v„ / 
(34) 

D3 = CA 

D4 = C3. 

Here, C,(/= 1,4) is related to the unknown amplitudes of the 
adjacent fibers U0„, £/0(n+i)> vn> V{n + n through the condi
tions (32) by 

C\=mn\u0{n + l) + U0n+ ±- (V(n + l)-V„)] 

+ mi2lV(n+l)-V„] 

C2 =m2\ t^0(n+l) ~ 

+ m22[V{n+1) + V„] 

U0n+ ~- (V{ll + l) + Vn) 

(35) 

U, 0(«+l ) U0n+^-(Vin+i)+Vn) 

c, 
+ m32[Vln + l) + V„] 

y =m4l[U0{n + l) + U0„+ - y - (K(„ + 1 ) - K „ ) ] 

+ m42[V{n + l)-V„]. 

The constants mn, . . . ml4 and m2l, . . . m14 are given in 
Appendix A. 

Having obtained the displacement field for the matrix strip 
(32) in terms of the boundary values U0in + I), U„, Vln + l), V„, 
the surface tractions aUn, oL{„_{)> Qu„, 1L{„_1) acting on the 
nth fiber can be computed. 

Thus, 

E„ W\PUx+U{n + {)PU2 + V„PUi 

+ Vi„ + i)P,,4]sinax 

+ V„PL^\smax 

1u„ =Gma[Ui„Rul + U{n + l)R„2 + VnRUi 

+ Vi„+l)RU4]cosax 

(36) 

+ VnRLi]cosax, 

where 

U1 „ = U„„ - V„ 

U2n = U0n+JLvn 

(37) 

^ ( n + l ) _ ^0(«+l) ^ X~ Vn+\ 

^ ( f l - 1 ) — ^O(n-l) "y^n-l-

Expressions for Pu , . . . . , RU[ . . . . . etc. are given in Ap
pendix A. Substituting (36) into (30), the following system of 
equations for the nth fiber are obtained: 

„2 
/* 

12 p( l -"„ , 2 ) 
• ^ ( ^ O f n - l ) ' ^ 0 » > ^ 0 ( n + l ) > 

Vn-i • • • V«)+ - y - F2(U0{n_l)t . . .) = 0 (38) 

• ^ 3 ( ^ 0 ( n - l ) > )~U0i = 0. 

Here, \i* = Gm/E{. The functions Fx, . . F3 are linear com
binations of the six unknown amplitudes C/0(„_i)) U0„, t/o(« + i)» 
vn~\> vn> Vn + \- These functions are given in Appendix A. 
Similarly, for the surface fiber from (29), the following equa
tions are obtained 

„2 

12 
K , - e 0 F , - /* 

P ( l - " » 2 ) 
F4(t/0 1 , t/02, K„ K2) 

• F 5 ( t / 0 1 > . . , V2) = 0 

(39) 
/** 

• ^ 6 ( t / o i . K 2 ) - t / 0 1 = 0 . 

The functions F 4 , . . F6 are also given in Appendix A. 

The system of equations (38) and (39) can be conveniently 
arranged in the following form 

[G*][u,] + [Q][u2] = 0 (40A) 

[Q][u„-,] + [Q][u„] + [e][u„ + 1] = 0 ; (406) 

where elements of the (2 x 2) matrices Q, Q, etc., are arranged 
in Appendix B and 

" "o« 

v„ 

It is of interest to seek solutions to the perturbation 
amplitudes (U0„, Vn) that exhibit a decay into the interior of 
the half-plane under consideration. Thus, one seeks values of 
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Fig. 7(b) Variation of t„ with nondimensional half wavelength f for 
T300/BP907. "decay mode" denotes present results; Vf as a parameter 

e0 that permit this behavior. Of all possible e0 that fall into this 
category, the minimum e0 is identified as the buckling "load" 
of the system. Thus, the following problem is considered. 

We are required to solve (40) subject to the condition 

U0l, Vl finite 

Un„, K „ - 0 a s / ? - o o . 
(41) 

Notice that (40) subject to (41) is a difference equation 
eigenvalue problem. Here, e0 is the eigenvalue sought and the 
amplitudes U0n, V„ are the associated eigenfunctions. The 
boundary conditions (41) are physically motivated to conform 
to the experimental observations discussed in (Hahn and 
Williams, 1986; Sohi, Hahn, and Williams, 1984; Waas and 
Babcock, 1989). The solution proceeds in the following man
ner: First, (40b) is solved using the boundary condition for 
large n. This enables one to find the general solution for U0„, 
V„ up to two arbitrary constants. Then, using the first of con
ditions (41) and the obtained general solution, substitute for 
U0l, Vi into (40a). This results in a (2x2) system of 
homogeneous equations for the two as yet undetermined con
stants. Vanishing of the determinant associated with this 
system gives the required condition to obtain e0. Unlike in the 
previous case, it is not possible to obtain an explicit expression 
for e0 (see (26)). This is because each member of the matrix 
associated with the final system of equations is a function of 
e„. Thus, we obtain an equation implicit in e0 of the form 

G(e0,l)=0. (42) 

Newton's method is used to solve (42) for a specified /. 
Details of the solution process can be found in Waas 1987. 
Depending on the geometry and material properties of the 
composite, several cases will be discussed next. 
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Fig. 8(a) Variation of critical c0 with fiber volume fraction V, for 
T300/BP907 and (b) variation of critical half wavelength lcr with fiber 
volume fraction V, for T300/BP907 

3.2 Results and Discussion. Results are computed for 
composites whose material properties are listed in Table 1. For 
clarity of presentation, the results are displayed in the (e0, /) 
plane. In the discussion to follow, the term "decaying solu
tion" is used to refer to solutions of (40) subject to (41). For 
comparison purposes we first present solutions to (40) subject 
to 

U0n=0, . . . K (a_1)=K ( ( I ) = K((I+1) . . . (43) 

which is the displacement field assumed in RIM (abbreviation 
for Rosen's in-plane mode (1965)). The value of e0 predicted 
by such a specialization is obtained by substituting (43) into 
(40b). One then finds 

eo = <7i2- (44) 

Values of (e0, /) conforming to (44) are indeed the RIM 
prediction. However, in order that (44) be a solution to (40), it 
must in addition satisfy the required boundary condition for 
large n. Clearly, this is not the case. The reason is that the 
Rosen shear mode result holds only for a composite of infinite 
extent, without recourse to a traction-free edge. Furthermore, 
the Rosen result 

I = Gm 

(l~Vf) 

is obtained in the limit /— oo, implying a mode of buckling 
with a long wavelength. Thus, the Rosen prediction cor
responds to buckling of an infinite medium where all 
wavelengths ( / » 1 ) are admissible solutions. Physically, the 
RIM prediction furnishes values of e0 corresponding to the 
equilibrium of the composite in a nontrivial configuration in 
which every fiber buckles in an identical manner. Where ap
propriate, the RIM prediction is included in the results 
presented for comparison purposes. 
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In Fig. 7 ( a ) , a plot of variation of strain with / for a com
posite with a low fiber volume fraction J - /= 0.1 is shown. In 
this figure, the result obtained from the present analysis has 
been compared with those of RIM and REM (Rosen exten-
sional mode). Notice that the buckling strain as predicted by 
the present analysis, and marked as point B, is lower than both 
the RIM and REM predictions. Similar curves for other values 
of Vf are shown in Fig. 1(b). Here, the minimum point of the 
curves marked as "decay m o d e " shifts to the right with in
creasing values of Vf. Beyond a certain value of Vf, the 
minimum is found to disappear. The nonexistence of a true 
minimum implies a continuous dependence of e0 on the half 
wavelength /. Thus, for a fixed value of E / E , , , , a critical 
decay buckling mode of short wavelength exists below a cer
tain Vf. Above this value of Vf, a short wavelength buckling 
instability is still present but shows a continous dependence on 
/. With increasing Vf, the buckling strain increases, while the 
corresponding critical half wavelength decreases as is shown in 
Figs. 8 ( a ) and 8(ft) . However, in this limit (Vf-~\), the 
critical half wavelength becomes comparable to the thickness 
of a fiber ( /= 1). In such cases, treating the fiber via beam 
theory is inadequate. To properly address this question re
quires modeling a fiber as a two-dimensional continuum. This 
aspect is not considered in this presentation. 

A critical strain (e„) is defined by points corresponding to 
such as B in Fig. 7 (a), and when a true minimum does not ex
ist, the minimum of all admissible (e 0 , / ) . Then, Fig. 9 ( a ) 
shows plots of e„ against the volume fraction Vf. In this 
figure, curves for a composite of large Bf/Em ( = 200) and 
c m = 0 . 3 have also been included for comparison purposes. 
The corresponding plots for the corresponding critical 
wavelength are shown in Fig. 9(b). In Fig. 8 ( a ) , the portion 

< 
P5 
H 

Plane strain 

Plane stress 

1 i ' ' > ' i ' • ' ' i • • ' ' i • 

2B0 480 EBB SGB 

Ej_ 
Em 

Fig. 10 Comparison of plane-stress and plane-strain approximations 
for BP907 single fiber composite; (a) t0 variation and (b) lcr variation 

of the curve marked A - A ' is a region of almost constant 
strain. This region spans a range of Vf that is large for small 
values of the composite 's E y / E M . This can be inferred from 
Fig. 9 ( a ) . The "sec t ion" A - A ' corresponds to the value of e0 

obtained from the previous analysis for a single-fiber com
posite. Physically, this implies that for values of Vf, less than 
that corresponding to point A ' , the fiber spacing is large 
enough that there are no interactions between fibers. Thus , the 
buckling is as predicted for a single-fiber composite. Beyond 
point A ' , one can no longer ignore this interaction effect. 
That this is so was emphasized in our previous discussion on a 
single-fiber composite. There, the existence of a certain critical 
depth into the matrix to which any surface effects were felt 
was discussed. It was noted that for a " s o f t " composite 
(Ey/E,„ =200 , say) this depth was larger than for a " h a r d " 
composite ( E / / E m = 50, say). Thus, here it is not surprising 
that the region of constant strain A - A ' persists further for the 
harder composite (Fig. 9 ( a ) ) . However, it is seen that in situa
tions where the interaction effect is present, the present decay 
mode prediction yields a higher value of buckling strain as 
compared with the R I M prediction for a composite of infinite 
extent. Experimental results reported in the literature show 
some scatter (Shuart, 1985) in the data on compressive 
strength. The RIM prediction, when compared with this data, 
can be in error by as little as 40 percent (June et al. 1969) to as 
large as by an order of magnitude (Shuart, 1985; Hahn and 
Williams, 1986; Sohi, H a h n , and Williams, 1984; Lager and 
June, 1969; Waas and Babcock, 1989; Waas, 1987). 

Before discussing possible causes for such a discrepancy, the 
difference in the results between a plane-stress and plane-
strain approximation for the perturbation problem will be ad
dressed. The plane-strain result can be generated by making 
appropriate substitutions for the elastic constants. Results are 
computed for the BP907 composite. For the single fiber case, 
Fig. 10 shows the critical strain and critical half wavelength 
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variation as a function of (E/ /Em) . With the plane-strain ap
proximation, the computed e„cr is slightly larger than the cor
responding plane-stress resulCwhile lcr is slightly lower. The 
Poisson's ratio of the fiber is assumed as 0.2. The corre
sponding results for the unidirectional composite exhibit a 
similar trend as shown in Fig. 11. 

It was seen that values of e0(T calculated for the RIM result 
and the present investigation overestimated the experimen
tally observed buckling strains. In addition, the present decay 
mode result is higher than the RIM result. The reason for this 
latter discrepancy is that the decay mode, which accounts for 
interaction between adjacent fibers, yields a critical 
wavelength that is a small multiple of the fiber diameter as 
compared with the longer wavelength RIM result. Further, the 
decay buckling mode is two-dimensional involving a 
dependence on both the x and j-directions, while the RIM is 
essentially one-dimensional, presuming that all fibers buckle 
in an identical manner. Thus, the RIM model is less constrain
ed than the present model. However, it is unrealistic as com
pared with recent experimental findings reported by Hahn and 
Williams (1986), Sohi et al. (1984), Hahn et al. (1986), and 
Waas et al. (1989), which indicate a decay mode type of buckl
ing. For example, in Waas and Babcock (1989), real-time 
holographic interferometry coupled with optical microscopy 
are used to capture the origins of compressive failure, which is 
seen to originate at a traction-free edge. In Hahn and Williams 
(1986) and Sohi, Hahn, and Williams (1984) evidence of multi
ple fracture in the damage area was presented. It was also 
postulated that microbuckling of fibers originated with the 
buckling of a single fiber, which caused tensile stresses to 
develop in the matrix in between, thus reducing the buckling 
load of the adjacent straight fiber. This process progressively 
involved additional fibers as the damage propagated. Both the 
RIM and the present model enforce perfect bonding condi
tions between fibers and matrix. In addition, the fibers are 

assumed to be perfectly aligned in a regular fashion. Both of 
these simplifications are unrealistic from a physical viewpoint 
in that neither are the fibers perfectly aligned nor are they 
perfectly bonded to the matrix. (Evidence to this effect is 
presented in Hahn et al. (1986) for example, that show SEM 
micrographs of the cross-section of typical virgin specimens.) 
An attempt was made to characterize the imperfect bonding 
between fibers and matrix in Kulkarni et al. (1973). However, 
no specific parameter was identified that enables quantifying 
the imperfect nature of the bonding by a suitable measurement 
in the laboratory. A recent investigation by Minahen and 
Knauss (1989), addressing the influence of the bond condi
tions on the buckling strian, has revealed a fivefold reduction 
in e0 when the displacement constraint at the interface is 
released. The reasons stated above are the primary causes for 
the discrepancy between the predictive microbuckling models 
(RIM and present) and the experimental results reported in the 
literature (Hahn and Williams, 1986; Sohi, Hahn, and 
Williams, 1984; Hahn, Sohi, and Moon, 1986; Lager and 
June, 1969; Waas and Babcock, 1989; Waas, 1987). 

5 Conclusions 

A simple mechanical model for fiber microbuckling has 
been considered with a view to understanding the effects of a 
traction-free edge in initiating the buckling process. For low 
fiber volume fractions, it is demonstrated that a decay buckl
ing mode furnishes values of critical strain which are below the 
predictions of the classical Rosen model (1965). At high 
volume fractions, the predicted critical half wavelength 
becomes comparable to the fiber thickness, invalidating 
treating the fibers via technical beam theory. A two-
dimensional description of the fibers is employed in another 
investigation. 

These preliminary results have highlighted some drawbacks 
of existing models for fiber microbuckling and are suggestive 
of the need for future research in understanding the com
pressive behavior of fiber composites. 
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the following relations hold between the P's and R's. 
P^=P»2 

(A4) 

With 

PL2-
pu 

PL3 = -> 

PL4 = -P, 

R,. = -R 

(A5B) 

"4 

"3 

"2 
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RL2 = -RUI 

RL3=RU4 

RL,=Ru, 

Fl = -PLl £/»-! +Pu, Un' -PL2U„2+PU2Un+l 

- vn^pLi + v„(PU2 -pLj+vn+lpU4 

F2=RL, t/,,-1 +RUl Un
{ +RL2U„2+RU2Un + 1 

+ V„_tRL3 + Vn(RUl +RL4)+ Vn+1RU4 

F3=-RLl f/„_, +/?„, U„> -RL2Un*+RU2Un + i 

- yn~xRL, + K(RU3 ~RL4)+ V„+1RU4. 

A P P E N D I X B 

"in Q\i~* 

. 921 922 s 
Q-

and, similarly for [Q], etc., 

9n = 

9 n : 

[PLl]+ ^ - [ / ? L _ , ] 
p ( l - 0 L""1J ' 2 

^["f^'"^] p ( l - f « 2 ) L 2 

P ' 

(A5b) Qi2= — YYRL^-RLJ, 

9n=0 

12 ^ [ - T ^ ^ 1 

(A6) 

J Pd -" m
2 ) 

^2i=^V[2^, q]- l 

922=0 

(Bl) <7n 

9n = —*7n 

9 l 2 = 9 l 2 

921 = 921 

922= - 9 2 2 

2T ^ " r l " 1 " - ^ - ^ " l 

„2 

9l2 ' 
12 

921 

922 

u p ( l - "„ , 2 ) 

p ' 

-•£[-§-*-•*.. 

£ \ZLP +P 

The above expressions for the matrix elements have been 
simplified by using relations (A5) between the J?'and P's. 
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Large Axisymmetric Deformation of 
a Laminated Composite Membrane 
The formulation and solution of the large elastic axisymmetric deformation problem 
corresponding to a membrane shell from an initially flat laminated composite 
material is provided. The numerical solution method developed is found to be very 
stable and accurate and is easily implemented on a personal computer. The results 
which consider initial pretension in the membrane are compared with the finite ele
ment results and with results obtained by assuming an approximate deflected shape 
in conjunction with the energy methods. The deformed profile, surface slope, and 
in-plane tensions are presented as a function of radial distance. Their variation with 
initial tension and normal pressure parameters is also shown. This problem is of im
portance in the design of large-diameter membrane concentrators for solar 
applications. 

1 Introduction 

Laminated composites are slowly being used outside the 
aerospace industry. New and innovative applications of high-
strength and high-modulus properties of composites are being 
sought because the cost of the light-weight advance com
posites continues to drop rapidly. For example, the use of 
pretensioned laminated membranes has been recognized as be
ing a very effective way of using the material where transverse 
deflection and slope are critical design considerations. These 
design variables are of concern in aerospace, as well as 
ground-based applications such as solar panels, dish antennae, 
solar reflectors, etc. These applications typically deal with 
large deformations. 

The large deformation problem for axisymmetric mem
branes having composite material properties does not appear 
to have been studied in the literature. However, membranes 
with isotropic material properites have been studied extensive
ly in the past and continue to be investigated, as noted in re
cent works (e.g., see Cook (1982), Fried (1982), and Murphy 
(1987)). The general problem of the axisymmetric membrane 
was studied in a classical work by Adkins and Rivlin (1952), 
where both geometric and material nonlinearities were con
sidered for the membrane. Though the method developed by 
Adkins and Rivlin (1952), and extended by others, was quite 
powerful for the study of inflatable membranes made from 
isotropic rubber-like materials, it still required significant 
computational effort to employ. 

Other less general methods were found to give adequate 
solutions for many common engineering applications in the 

Currently at the Aerospace Engineering Department, University of Texas at 
Arlington, Arlington, TX 76019. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED 

MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME 
Applied Mechanics Division, September 22, 1987; final revision, January 12, 
1988. 

context of plate and thin shell theory (Soedel, 1981; Nielan, 
1982; Murphy, 1987). Further, these more approximate 
methods give good indications of overall surface deformations 
and equilibrium loads in the membrane for structural design 
purposes (Murphy, 1987) and where deformations are con
strained to be only moderately large, but the degree of approx
imation is unacceptably high if fine details of surface contour, 
including slope, are required. For instance, in Nielan (1982) 
and Murphy (1987), a variational principle is used to describe 
the load/deformation relationship where the Rayleigh-Ritz 
technique is applied assuming a parabolic transverse displace
ment. However, at various loading levels, the surface shape 
deviates significantly from the ideal parabolic shape needed 
for solar concentrator application; thus, deviations from the 
parabolic shape, which can seriously degrade the optical per
formance, are not predicted with this approach. 

In recent work, the analysis of general membrane response 
has been carried out using the finite element method (Cook, 
1982; Fried, 1982). Although this method is quite powerful 
and general, it can also be quite cumbersome and expensive to 
implement, especially for design problems, primarily because 
of the nonlinear geometric stiffness effect which must be con
sidered in membrane problems. 

The purpose of this work is to provide a highly accurate 
design assessment analysis method for evaluating the load, 
large deformation response of membrane structures composed 
of composite materials that is adequate for optical surface 
evaluations. Further, the model should be capable of being 
adaptable to a range of initial shape contours other than flat. 
. We base our study of large deformation of laminated mem
branes on the elasticity theory provided by Green and Adkins 
(1970). The formulation results in a system of algebraic and 
ordinary differential equations, where the derivatives of the 
pertinent variables are presented in explicit form. The 
derivatives are used in performing the integration at a point by 
using the Taylor series expansion. From the initial guess at a 
point, the solution is successively extended toward the known 
boundaries and the initial guess is modified till the boundary 
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Fig. 1 Description of geometry and coordinates corresponding to the 
undeformed and deformed membranes 

conditions are matched. The method is found to be very stable 
and accurate and is easily implemented on an IBM PC or com
patible computer. 

2 Problem Statement 

We consider the large elastic deformations of initially flat 
membranes with axisymmetric geometry and loads. The axis 
of symmetry is the same in the deformed and the undeformed 
cases. It should be noted that preservation of the axis of sym
metry does not require assumptions of uniformity, isotropy, 
and incompressibility. The material is assumed to behave 
linearly, which is a good assumption for a wide range of com
posite materials. The deviations from isotropy which are per
missible under the assumption of an axially symmetric system 
of deforming forces are cylindrical orthotropy and quasi-
isotropy. The axisymmetric membrane is subjected to 
uniformly distributed in-plane loads along the edges and a 
continuous distribution of normal traction on the surface. It is 
assumed that no singularities are present in the system of 
forces and in the surface of revolution defining the elastic 
body. 

3 Problem Formulation 

The plane curve C{ (Fig. 1) generates an undeformed mem-, 
brane surface by complete revolution about the axis xt in its 
plane. The curve C\ has no double points and does not cut the 
axis x3 except possibly at one or both of its endpoints. Similar
ly, the plane curve C2 generates a deformed surface (Fig. 1). 
These curves thus become meridian curves on the middle sur
face; lines of latitude are formed by the family of curves which 
are orthogonal to the meridians at every point. 

We choose a cylindrical polar coordinate system (p, 8, x3) 

for the undeformed membrane surface, S0, and a coordinate 
system (/, 6, x3) for the deformed membrane surface, S. 
Another orthogonal curvilinear coordinate system can also be 
defined by two-dimensional curvilinear surface coordinates (T?, 
6) and (£, 6) in the undeformed (S0) and deformed (S) sur
faces, respectively, where ij and £ are coordinates along the 
meridian and 6 along the latitudes. 

From the symmetry of the system, it follows that the 
prinicipal directions of strain at a point coincide with the me
ridians, the lines of latitude, and the normal to the deformed 
middle surfaces y3 (S and S0). We denote the principal exten
sion ratios in these directions by X[, X2, and X3, respectively. 
We then have 

(1) 

The variables, X^ X2, X3, r, £, and ij, are independent of 6 and 
may be regarded as functions of the single variable p. Alter
natively, r, £, or t\ may be chosen as the independent variable. 

3.1 Deformation Relationships. A line element of length 
dS in the surface of the deformed membrane is given by 

dS = d£2 + r2dd2. (2) 

The expression for the corresponding element dS0 in the 
undeformed middle surface is 

dS2
0 = dri2+p2de2. (3) 

Expressing the undeformed length in terms of the deformed 
coordinate system, we get, from equations (3) and (1), 

1 r2 

dS2
n = — dt.2 + —=- dd2. (4) 

x , = 

x2 = 

x3 = 

di 
d-q 

r 

P 

(incompressible) 
X,X2 

X? x? 
The covariant and contravariant metric tensors associated 
with the coordinates in the middle plane of the deformed and 
undeformed membrane are [obtained from equations (2) and 
(4)] 

Ano — 

&r,R — 

" 1 0 

0 r2 

1 

0 

•A^ ft — 
r I 

0 

0 1 
1 , A- (5) 

X? 

Qr,R — 

X? 0 
. x? x?x? 

= \jr2 

(6) 

The component of the Green strain tensor for the curvilinear 
coordinate system are obtained from equations (2) and (4) and 
are 

Tn = 

722 : 

-0-TT) 
(7) 

7 i 2 = 0 

The physical components of the strains are defined as 
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taH -
Ya/3 

r ^ r • {8) 

3.2 Constitutive Relationships. Let's consider an or
thotopic layer with principal material directions 1 and 2. The 
stress-strain relationship is given by Jones (1975) 

Qn 2i2 o 

sym 

0 

Q* 

e22 (9) 

Qn Qn Gi6" 

Q22 226 

sym Q66 _ 

• 

M 
eee 

v. e { 8 ^ 

The stress-strain relations • (9) in the orthogonal coordinate 
system rotated by an angle (say, a) in a 1-2 plane are given by 

(10) 

(see the Appendix for definitions of Qy and Q,y). Figure 1 il
lustrates the coordinate system. 

In the general case with body coordinates, there is coupling 
between shear strain and normal stresses and between shear 
stress and normal strains. Thus, in body coordinates, even an 
orthotropic layer behaves as an anisotropic layer. If we 
laminate these layers together, with each layer oriented at an 
arbitrary angle from the body coordinate system, the in
tegrated constitutive relations become 

~Nci 

N„ 

Nu 

-"411 -^12 ^ 1 6 

^ 2 2 ^ 2 6 

sym A66 

-
M 

eee 

- e i e ^ 

(11) 

where 
C1/2 p1/1 

Nii = J _,/2
 aady3, N„ = ] _^ <jeedy3, 

Nt - I 
1/2 

<j(edy3 

and 

Aij=\_inQijdyi= £ (Qu)k(yu-y3k-i)> 

(12) 

(13) 

where K is the total number of orthotropic layers and t is the 
total thickness of the laminated membrane. The laminates, 
with layers arranged in such a way that the stiffness coeffi
cients A16 and A 26 are zero and the others are related in such a 
way that the material behaves in the membrane plane like an 
isotropic material, are called quasi-isotropic material. An ex
ample of such a laminate is given in the Appendix. Note that a 
symmetric lay-up is required to get membrane strains and 
bending curvature decoupling. Equation (11) can be reduced 
for quasi-isotropic laminated membranes as 

Ntl 

N„. A 12 ^ 2 2 

(14) 

Nu 0 

3.3 Equilibrium Equations. The £ and 6 curves are the 
lines of principal curvature of the deformed middle surface. 
Let the normal curvatures in these directions be denoted by K? 

and Kg, respectively. The equilibrium equations for a general 
shell are derived by Green and Adkins (1970). These 
equilibrium equations reduce to 

Ni(r = N„ 
dr 

d$ " m dli 

P=P\ -Pi 

(15) 

for the membrane case, where P is the resultant pressure in the 
direction of outward normal to the deformed middle surface. 

3.4 Compatibility Conditions. The Mainardi-Codazzi 
equation (Cai II2 = Ca2 II1) with a = 2 yields 

d dr 

-dlW-'t-dT 
(16) 

Also, from the elementary formula for the curvature of a 
plane curve, we obtain for a meridian curve in the deformed 
membrane 

cPr/d? 

['<•£)' 
(17) 

Substituting K( into equation (16) and integrating the resulting 
equation, we get 

If we assume that K9 is finite and the surface cuts the axis of 
symmetry orthogonally at r equal to zero, then from equation 
(18), 

dr 

ft 
1. 

We get the alternative relation from equations (17) and (18) 

cPr 

From equations (15) and (16), we obtain 

(19) 

», d d dr 
N«-dJ «*) + <.-% WxD-P — 

Prdr + 

Integrating equation (20), we get 

1 f 

where L is constant. When P is constant, this becomes 

1 „ L 
K„N, 

(20) 

(21) 

(22) 

If the deformed sheet cuts the axis of symmetry orthogonally, 
we have at the point r = 0 

KJ=K<, = K; X, = X2 = X (say); N^ =Nm =N (say). 

Equation (22) and second part of equation (15) yield 

2KN=P, L = 0. (23) 

4 Deformation of Circular Quasi-isotropic Membrane 

Let's consider the undeformed body to be a uniform 
laminated membrane consisting of incompressible orthotropic 
layers. The membrane is clamped at a radius "a" with initial 
in-plane tension N0. The membrane is inflated by a uniform 
pressure P applied transverse to the surface so that it takes an 
axisymmetric form. The deformation thus produced may be 
examined by using the results of an axially symmetric mem
brane. The procedure follows Green and Adkins' (1970) ap
proach, with the exception that the constitutive relations being 
used are for a laminated composite membrane. The commonly 

152/Vol. 57, MARCH 1990 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.244. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



used engineering constants for the orthotropic material are in
corporated in the analysis. The constitutive relations used by 
Green and Adkins are of physical significance only in the case 
of rubber-like materials. In equation (10), we have 

T) = P, X; = 
dt 
dp 

(24) 

and, in the remainder of the equations, the independent 
variable may be changed from £ to p by making use of equa
tion (24). These equations can be solved for the determination 
of the unknowns r, X,, X2, X3, N^, Nm, K{ , and ng as functions 
of p. Equation (24) defines the geometric relationship among 
coordinates in an undeformed shape. Appropriate relation
ships may be used for other undeformed shapes. 

If the values of X,, X2, X3, Ki, and ne are known at the point 
P initially at (p, 0) in the middle plane of the undeformed 
membrane, the remaining quantities and their first derivatives 
may be found from the scheme given here: 

(1) 

(7),(8),(14) 

(1) 

(18) 

(27) 

(16) 

(15) 

(26) 

(26) 

(15) 

X3 = 
1 

XiX-> 

N„ 

dr 
~dj 

An A2[ 

An A22 

r = \2p 

= X1(l-/c2/-2)' 

1 
2(1 - 1/X2) 

1 

2(1 - 1/X2
2) 

Q 2̂ 1 / dr \ 
dp ~ pVdT h) dp 

dnt 

dp 

1 

p V dp 

1 dr 

dN, 

dp 
II -. 

r dp 

1 dr 

dp 

dK( 

~d7 

dX, 

~dp~ ' 

dNm 

dp 

Nt 

X? /dN, H 
2An V dp 

'A,-, dX, 

-*[4r 

2Ai2 dX2\ 

' H dp) 

, ^22 d\2 

X3 dp 

aNx 
dp + Kt 

\\ dp J 

dNm dKe\ 

dp dp. 

(25) 

-(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

Equations (25)-(34) are derived by proper substitution or dif
ferentiation from the equation numbers given on the left side. 
In each of these equations, the quantity on the left side is ex-
presed as a function of the known quantities X,, X2, Ki, and K0, 
or quantities that can be determined from them by means of 
the preceding equations in the scheme. All the quantities are 
defined as a function of p only. 

Expressions for the second and higher-order derivatives of 
r, X [, X2, K{ , KS , N^j, and Nm in terms of quantities previously 
determined may be obtained by successive differentiation of 
equations (28)-(34). Alternatively, for the second derivative of 
r, we obtain from equations (19) and (24), 

<Pr 1 / dr dX, \ 

x r v & " * - - * * r X v - (35) 
dp2 

Now, we will consider the center of the deformed membrane 
where r is equal to zero where the symmetric conditions exist: 

(36) 

KJ=K 9 = K; X[=X2 = X; NH=Neg=N; 

dr - v x - 1 

It is assumed that K, X, and N are finite and nonzero at the 
center of the deformed membrane. Equations (26) and the 
second part of equation (15) yield 

1 
N = — ( y 4 n + ^ 1 2 ) ( l - l / X 2 ) (37) 

2KN=P, (38) 

respectively, when r = 0. Substituting the symmetric conditions 
(36) into equations (29)-(35), it follows that at the center of 
the deformed membrane 

d2r 

dp1 

dX, 

~dp~ 
dX2 

~dj 

dK^ 

~dp~ 

dKe 

dp 

dNH _ dNet 
= 0. (39) 

dp dp 

Rewriting equation (15) in the form (using equation (24)) 
dr 

~^P~' 

differentiating twice, and inserting the conditions (36) and (37) 
at the center, we get 

•£("«')="« (40) 

d2N, U (PN* 
(41) 

dp2 dp2 ' 

Similarly, from equation (20) we have 

- d2^ = d2Ki 

dp2 dp2 ' 

With the use of equations (37)-(42), the second derivative of 
the second part of equation (15) yields 

(42) 

d2N, 
« + N 

cfKe 
= 0. (43) 

dp2 '" dp2 

Again, by differentiating equation (35) and using the sym 
metric conditions at the center, we have 

d3r d2X, 
-K2\2 

dp' dp2 ~ ' 

and by differentiating equation (27) three times, we get 

dh _ , _ d 2 X ? _ 

dp* ~ dp2 ' 

Equations (44) and (45) yield 
cPX? cPX, 

-«X3. 

(44) 

(45) 

(46) 
dp2 dp2 

Two more relations are obtained by differentiating equation 
(26) twice and introducing the symmetric conditions at the 
center. Thus, 

d2N 
ii 

dp2 

d2Nm 

2 / 

2 / 

d2\ 

dp2 

c^X, 

• +Aa-'» 
dp2 

d 2 X 2 -
2 + A 2 2 ^ -dp2 X3 V " dp2 • " " dp 

Rearranging equations (41) and (46)-(48), we get 

d2^ 3An-A21 

dp2 

(P\2 

dp2 

£NtL 
dp2 

9An-A2 

9AU-A, 

9AU 

K2X3 

2X3 

2K2. 

(47) 

(48) 

(49) 

(50) 

(51) 
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Substituting these equations into equations (41)-(43) yields ex
pressions for second derivatives of Nm, * f, and ne at the 
center. By continued differentiation of equations (27)-(35), 
one can show that all odd-order derivatives of X,, X2, K^, ne, 
Ti, Te, and dr/dp vanish at p = 0. The fourth and higher-order 
derivatives of these quantities can be evaluated by a procedure 
similar to the foregoing, but the resulting expressions will be 
of increasing complexity. 

4.1 Numerical Algorithm. The numerical algorithm is 
based on the use of a Taylor series expansion to do numerical 
step-by-step integration. The following steps are incorporated 
into the numerical computation: 

1 Assume X at the center of the membrane. 
2 Calculate N and K from equations (37) and (38). 
3 Evaluate values of the second derivatives of X,, X2, K{, K0, 

N^, and NM at the center by means of equations (49)-(51) and 
(41)-(43). 

4 Approximate values of X,, X2, K(, K9, NH, and Nee at the 
point (Ap, 0) can then be calculated from a Taylor series ex
pansion (truncated) of the type 

M A P — \ 
1 \cP\j 

=0+1"Llp5L|, (Ap)2. 

and Ke are obtained by 

PM]nAp-[M(«-l)Ap + Ap + 

5 First derivatives of X,, X2, /cf, .. ..„ „__ 
means of the system of equations (25)-(34) at the point Ap. 

6 The values of \ u X2, « f, K„, Nkt, and NM at nAp from the 
values at (n - l)Ap are obtained by using the Taylor series ex
pansion of the type 

"rfX," 
- dp J (n-l)Ap 

7 Steps 5 and 6 are repeated until the boundary is reached. 
8 If the boundary conditions are matched, the process is 

terminated; otherwise the initial assumptions at the center are 
modified appropriately and the algorithm is repeated. 

4.2 Profile of the Inflated Membrane. To determine the 
shape of the profile of the inflated membrane, we observe that 

m<-tr^) (52) 

: -Kg\,r. (53) 

dp J \ dp / V dp 

This relation, with equations (24) and (28), yields 

dx3 

~dp~ 

The sign is chosen to be negative because x3 is a decreasing 
function of p. This relation and those obtained from it by dif
ferentiation, with respect to p, enable the derivatives of x3 to 
be calculated from the previously determined values of K„ X,, 
and r and their derivatives. The successive determination of x3 

at all points of the membrane proceeds with the help of a 
Taylor series. The values of x3 at p equal to zero are adjusted 
so that x3 is equal to zero at the fixed boundary. 

5 Discussion of Results 

Representative results showing the applicability and ac
curacy of the aforementioned numerical modeling procedure 
for the study of a typical membrane are described next. All the 
results presented are for an initially flat, quasi-isotropic, glass-
epoxy laminated membrane with glass fibers oriented in the 
[0/90/±45] directions. The material properties used in the 
numerical calculation are as given below: 

El =29.94 GPa 

£2 = 8.45 GPa 

The equivalent isotropic properties for the laminated mem
brane are used in the energy method and the finite element 
method. These equivalent isotropic properties, as derived 
from the relationships provided in the Appendix, are 

£=32 .1 GPa, c = 0.276. (55) 

A 15-m diameter circular membrane clamped at the edge is 
considered. The thickness of the membrane is 0.254 mm, and 
a 90 Pa uniform pressure load normal to the membrane sur
face is assumed. Finally, various levels of initial pretension are 
used to illustrate the relative dominance of various response 
mechanisms. 

Figure 2, which gives error size (defined as the difference in 

G 1 2 =4.0GPa 

e12=0.32 
(54) 
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Fig. 4 Deflected shape profile of a circular simply-supported 
membrane 

the predicted membrane center deflection calculated by the 
finite element method and the current method, respectively) as 
a function of the number of integration steps, shows the con
vergence of the center displacement for several different mem
brane pretension levels. The displacement converges rapidly as. 
the number of integration steps is increased. The pretension-
ing of the membrane results in relatively lower error, even with 
a large step size. This is caused primarily by a geometric stiff
ening effect introduced by higher levels of pretension. The er
ror in center deflection is within one percent of the final value 
for all pretension cases when the number of integration steps is 
greater than 100. 

The variation in center deflection with pressure is presented 

in Fig. 3 for four different membrane pretension levels. The 
center deflection decreases as pretension increases for a given 
uniform pressure. This occurs because higher pretensions add 
higher levels of stiffness as the membrane changes shape to 
carry the load. Further, the center deflection variation with 
pressure becomes more linear as pretension increases. The 
variation is, however, quite nonlinear for lower pretensions. 
The deflection will increase rapidly with an initial change in 
pressure, but the membrane will become stiffer at higher 
pressures as the geometric stiffness starts dominating. 

Deformed profiles of a membrane for various initial ten
sions are shown in Fig. 4. They are compared with the 
nonlinear ANSYS finite element solutions and the energy 
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method with assumed parabolic deformed shape (Murphy, 
1987). Forty-one axisymmetric, conical shell elements were 
used in the finite element simulation. As shown in Fig. 4, the 
present analysis results are in excellent agreement with the 
nonlinear finite element analysis; similar agreement has been 
obtained in numerous other membrane design comparisons 
using the finite element and the current analysis procedures. 
Also shown in Fig. 4, for comparison purposes, are predicted 
results using the variational method (Murphy, 1987) which 
assumes an initially parabolic shape. It is seen that these 
results agree less well with the other predictions, especially at 
higher initial pretensions. 

A more stringent comparison for the predicted results is 

given in Fig. 5, where the predicted surface slope as a function 
of position is illustrated for four initial pretension levels, using 
each of three predictive methodologies. Local surface slopes 
are important, especially in applications where the deformed 
.surface is used for reflection of the incident solar radiation. It 
is evident that the surface slope deviates considerably from the 
linear slope variation of the parabolic deformed surface,2 

Actually, a uniform pressure loading with uniform membrane tension would 
result in a spherical shape. We refer to parabolic contours here because that is 
the desired shape from an optical concentrator perspective and also because the 
slope differences between the ideal parabola and the best spherical approxima
tion to the parabola is quite small for the deformation levels considered here. 
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especially for very large deformations and low initial preten
sions (Fig. 5). In the case of the finite element method, the sur
face slopes are obtained by simple differencing techniques 
from the nodal displacements. Therefore, their accuracy 
depends on the number of finite elements. It is seen that the 
surface slope results obtained from the finite element analysis 
are in good agreement with the results from the present 
analysis, although it should be noted that the one obtained 
from the finite element analysis depends on the number of 
elements. The obvious inadequacy of the simple variational 
technique using an assumed parabolic displacement field is 
also seen. 

The predicted meridinal and latitudinal tension variations 
with radial position are shown in Fig. 6 for three pretension 
levels. It is seen that the tensions vary increasingly in a 
nonlinear manner at lower initial tensions. This is because the 
relative superimposed tension due to deflection decreases as 
the initial tension increases. Further, both tension components 
tend to be uniform for a higher initial tension. Finally, the 
latitudinal tension decreases at a faster rate with radius than 
does the meridinal tension. 

The results presented here demonstrate that the method 
based on large elastic deformations can easily be implemented 
and may be used to get the accurate quantitative information 
related to laminated membrane design. The technique is 
capable of handling very large deformations of laminated 
membranes with initial tension. The method is easily im
plemented on a microcomputer, and the analysis can be 
preformed inexpensively and in relatively little time compared 
to finite element analysis. The critical results (e.g., surface 
slopes) are obtained with a high degree of accuracy as com
pared with the finite element analysis. 
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A P P E N D I X 

a , , - * ' • 

Ql2 = 

Qn = 
l-v12v21 l~v12v2l 

C?66 = G12 

Qn = I/, + U2 cos (2a) + t/3 cos (4a) 

Ql2 = U4-U3 cos (4a) 

Q22 = Ul-U2 cos (2a) + U3 cos (4a) 

6.6 = - j - Ui sin (2a) + U3 sin (4a) 

226 = — U2 sin (2a) - C/3 sin (4a) 

Q66 = C/ 5 - t / 3 cos (4a) 

where 

C/1=(3Q11+3Q22 + 2Q12 + 4e6 6) /8 

tf2=(Gll-Q22)/2 
^ 3 = ( Q n + e 2 2 - 2 Q 1 2 - 4 Q 6 6 ) / 8 

^ 4 = ( Q i i + e 2 2 + 6 G , 2 - 4 e 6 6 ) / 8 

^ 5 = (Q , i+e22 -2Q 1 2 + 4Q66)/8. 

For a [0 deg /90 deg/ ±45 deg]., quasi-isotropic laminate, 

An=A22 = 4tUi 

Al2 = 4tU4 

A66 = 4tU5 

Al6=A26 = 0 

where t is total thickness. 
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Effective Elastic Moduli of 
Ribbon-Reinforced Composites 
Based on the Eshelby-Mori-Tanaka theory the nine effective elastic constants of an 
orthotropic composite reinforced with monotonically aligned elliptic cylinders, and 
the five elastic moduli of a transversely isotropic composite reinforced with two-
dimensional randomly-oriented elliptic cylinders, are derived. These moduli are given 
in terms of the cross-sectional aspect ratio and the volume fraction of the elliptic 
cylinders. When the aspect ratio approaches zero, the elliptic cylinders exist as thin 
ribbons, and these moduli are given in very simple, explicit forms as a function of 
volume fraction. It turns out that, in the transversely isotropic case, the effective 
elastic moduli of the composite coincide with Hill's and Hashin's upper bounds if 
ribbons are harder than the matrix, and coincide with their lower bounds if ribbons 
are softer. These results are in direct contrast to those of circular fibers. Since the 
width of the Hill-Hashin bounds can be very wide when the constituents have high 
modular ratios, this analysis suggests that the ribbon reinforcement is far more 
effective than the traditional fiber reinforcement. 

1 Introduction 
The effective elastic property of a two-phase composite is 

known to depend on the microgeometry of the reinforcing 
phase. While considerable work apparently has been done to 
estimate the elastic behavior of the particle and fiber-reinforced 
composites, the cross-section of fibers in the latter case has 
mostly been treated as circular. When the fibers exist in the 
form of elliptic cylinders such that the aspect ratio of the cross-
section (the ratio of thickness to width) is not necessarily one, 
this shape parameter may have a significant effect on the over
all moduli of the composite. In particular, when the aspect 
ratio approaches zero, the reinforcing fibers become ribbons, 
which, being able to be easily processed, will have great po
tential applications if the resulting composite property is su
perior to that reinforced with circular fibers. Motivated by 
such an observation, our objective here is to examine the in
fluence of the aspect ratio on the effective moduli of the com
posite, with a special reference to the property of ribbon-
strengthened solids. 

Two types of composites will be considered here. The first 
one, as shown in Fig. 1(a), is reinforced with monotonically-
aligned, uniformly-dispersed elliptic cylinders or ribbons, so 
that the material, as a whole, is orthotropic. Nine independent 
elastic constants are to be determined as a function of aspect 
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ratio, a, and volume fraction, clt of the cylinders. The second 
type, as depicted in Fig. 1(b), contains randomly-oriented el
liptic cylinders or ribbons in the transverse plane, resulting in 
a transversely-isotropic composite. The five independent elastic 
moduli associated with such a composite will be derived, and 
the results will be checked against Hill's (1964) and Hashin's 
(1965) bounds. 

The shape of the elliptic cylinders and ribbons will be rep
resented, for simplicity, by an ellipsoid, with the principal axis 
extending to infinity marked as axis 1. We only need to consider 

a=t/w 

Fig. 1 Schematic representation of a two-phase composite with (a) 
monotonically aligned elliptic cylinders, and (b) two-dimensional ran
domly-oriented elliptic cylinders. For thin ribbons, the aspect ratio a = 
llw - 0. 
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the range of aspect ratio from 0 to 1, as the corresponding 
results from 1 to <» can be readily recovered from those results 
by interchanging the 2 and 3-axes. This representation, together 
with the assumption that fibers and the matrix are perfectly 
bonded, allows one to make use of Eshelby's (1957) solution 
of an ellipsoidal inclusion. To deal with the condition of finite 
concentration of reinforcing phase, Mori-Tanaka's (1973) 
mean-field theory will be employed. This method has previ
ously been used by Chow (1978), Taya and Chou (1981), Taya 
and Mura (1981), and Weng (1984), among others, to examine 
various elastic properties of composites, and has proven to be 
reliable. In particular, it • was shown (Weng, 1984) that when 
the inclusions are spherical, the derived bulk and shear moduli 
of the composite coincide with Hashin and Shtrikman's (1963) 
lower bounds if the inclusion is the harder phase, and coincide 
with their upper bounds if the inclusion is the softer. When 
the three-dimensional, randomly-oriented inclusions are sphe
roidal in shape, the resulting bulk and shear moduli—with the 
aspect ratio varying from 0 to oo—were found by Tandon and 
Weng (1986) to always lie on or within the Hashin-Shtrikman 
bounds (1963), with the spherical inclusions and thin disks 
taking the opposite ends. Moreover, when both phases possess 
an identical shear rigidity, the bulk modulus of the composite 
containing spherical particles coincides with Hill's (1963) exact 
solution. Comparisons with experimental data from some two 
and three-phase composites have also shown good agreement 
(see Weng, 1984, for other implications). 

To pave the way for the subsequent analysis, let us first 
briefly recapitulate the Mori-Tanaka method (1973) in the fol
lowing section for the simple monotomcally aligned composite. 
For brevity, the familiar symbolic notation, with a bold-faced 
Greek letter representing the second-order tensor, and the or
dinary capitol letter representing the fourth-order one, will be 
adopted there. Throughout the text, the matrix phase will be 
referred to as phase 0, and the elliptic cylinders or ribbons (the 
inclusions) as phase 1. The bulk and shear moduli of the rth 
phase will be denoted by Kr and jir, respectively, and its 
volume fraction will be denoted by cr. 

2 The Mori-Tanaka Method for a Monotonically 
Aligned Composite 

Consider a two-phase composite containing homogeneously 
dispersed inclusions. To facilitate the determination of mean 
stress in the two constituent phases, we may introduce an 
identically-shaped comparison material, with the property of 
the matrix. We now subject both the composite and the com
parison material to the same boundary traction which would 
give rise to a homogeneous stress a. The strain in the com
parison material is then given by 

€° = V * , (1) 
where L0 is the elastic moduli tensor of the matrix, and its 
inverse indicates its elastic compliance. 

Due to the presence of inclusions, the mean strain of the 
matrix in the composite material generally differs from e°, and 
so does it mean stress from the externally applied a. If we 
denote these differences from e° and a by e and a respectively, 
the average stress of the matrix in the composite system is given 
by nf>) = b + a = LQ(t° + e). (2) 

The average stress and strain of the inclusions further differ 
from those of the surrounding matrix, say, by some additional 
perturbed values a"' and epl. Then, by means of Eshelby's (1957) 
equivalence principle the average stress of the inclusions can 
be written as 

<r!1)=ff + er + <H* = Z,1(t0 + e + e'*) 

= L0( f° + e + e'"-£*), (3) 
where L{ is the elastic moduli tensor of the inclusions, and e* 
is Eshelby's equivalence transformation strain (or eigenstrain, 

Mura, 1987), introduced into the regions occupied by the in
clusions so that L t could be replaced by Z,0 to provide the same 
<r(1). The perturbed strain ff" is taken to be related to e* through 
Eshelby's relation 

f?' = St*, (4) 

where S is Eshelby's transformation tensor. The fourth-rank 
S tensor possesses the symmetry Sykl = Sjjki = Sijlk; its com
ponents for an elliptic cylinder are given in the Appendix {A 1). 

Since the weighted average of air) must be in balance with 
the externally-applied a (namely <r= c, aw + c0 <r(0)), one has 

o=-clo
pl, or~e=~c1(e

p'-e*). (5) 

By substituting (4) and (5) into the last of (3), one can find e* 
in terms of e°, which is further related to a by (1). 

Similarly, by considering the weighted mean of the strain 
components, one finds that the total strain of the composite 
is given by 

i=e° + clt*. (6) 

This e allows one to determine the effective elastic moduli 
tensor L through a = L i. 

Thus, central to the determination of the overall moduli is 
the evaluation of e* for the considered problem. 

3 Effective Elastic Moduli of a Two-Phase Composite 
with Monotonically Aligned Elliptic Cylinders 

The infinitely-extended principal axis is taken as axis 1, the 
one along the thickness (t) of the elliptic cross-section as axis 
2, and the other along the width (w) as axis 3. Then following 
the foregoing process—submitting (4) and (5) into the last of 
(3)—we arrive at the connection between the normal compo
nents of e*j and e°j (henceforth, all indicial notations) as 

h B2 B3 \ 

U B5 B6 

h Bs B9 I 

/ e f l 

«& 
Vh 

(7) 

where 
Bl=clDl+D2 + c0(S12n + Smi) 

B2 = ci+Di + c0 (S2222 + Si322) 

5 3 = C1+JD3 + C0(S2233 + S3333) 

5 4 = C1+Z>3 + C0(AS2211+S331l) 

5 5 = C A + A > + Co(AS2222 + S3322) (8) 

B6 = cx + £>3 + c0 (AS2233 + S3333) 

B7 = c1 + D3 + Co(DiS3311 + S22i1) 

Bs = c, + D} + c0 (AS3322 + S2222) 

B9 = c A +D2 + c0 (AS3333 + S2233), 

and in terms of the Lame constants of the rth phase, 

£>, = l+2Gii-/*o)/(Xi-Xo). 

A = ( \ ) + 2MO)/(XI-XO), (9) 

A = x0/(X,-x0). 
Inversion of the 5-matrix in (7) leads to the following solutions 
for iff. 

en A, 

eh | = -^ | A4 A5 A6 

. e33 , Al ^8 

(10) 
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where 

Al=D1(B^-BsB9)+Bi(B5-Bl)+B2(B9-B6) 

A2 = Dl(B2B9-B3B,)+B6(Bs-B2)+B5(B3-B9) 

A3 = Dl(B3B5-B2B6)+Ba(B6-B3)+B9(B2-B5) 

A4 = Dl{B,B9-B6B1)+Bl(B6-Bg)+Bi{B1-B,) 

A5 = D1(B3B1-BlB9)+B4(B9-B3)+B6(Bl-B1) (11) 

A^DABtBs-BjBJ+BiiBi-BJ+B^Bi-Bf,) 

A1 = Di(BsB1-B^)+Bi(B4-B1)+Bl(Bi-B5) 

Ai = Dx(BiBi-B2B1)+B5(B1-B{)+B^(B2-B%) 

A9 = Dl(B2B4-BlB5)+B7(B5-B2)+Bs(Bi-B,), 

and 

A = Bl (B5B9 -B(Bt) + B2(B^ - B4B9) + B3 (B4B% - B5B7). 

The shear components are uncoupled, having the simpler 
expressions: 

£12 = 
0*i - Mo) 

Mo + (M I - Mo)(ci + 2 coSi212) 
e?2, 

^ 2 = 1 + 
Mo 2 CoS12i2+ /*</(/*i-Mo) 

(16) 

3.5 Longitudinal Shear Modulus Parallel to the Edge of 
Width n13. In this case we apply al3, and the result is 

fhi=l+ £! . 
Mo 2 c0S1313 + / x 0 / ( / ^ 1 - ^ 0 ) 

(17) 

3.6 In-Plane Shear Modulus n23. Similarly, by applying 
tr 23, we arrive at-

M23 = j £l 

MO 2 C0S2323 + Mo/(Ml - Mo) 
(18) 

3.7 Longitudinal Poisson's Ratio Perpendicular to the Sur
face of Thickness vn. This property is the measure of shrink
age in the thickness (/) direction when the composite is under 
a pure tensile stress au. By definition, e22 = - "i2«n- Then 
with (6), (10), and e§2 = e§3 = — ^0e0,, one has 

P Q - CI[A4~ v0(,A5+A6)]/A 
"12 = l+Ci[Ai-v0(A2 + A3)]/A 

(19) 

(MI~MO) 

Mo + (MI - MO)(CI + 2 c0S1313) 

(Mi ~ Mo) 

MO + (Ml - Mo)(Cl + 2 C0S2323 ) 

e°n, 

& • 

(12) 

With (10) and (12), we now proceed to determine the nine 
independent elastic constants for the orthotropic composite: 
E n , E22, E33, fin, /t13> fi2i, v12, c13, and v32. The algebraic 
processes are sometimes tedious; only the end results will be 
presented in the following. 

3.1 Longitudinal Young's Modulus E n . To derive E u , 
we apply a pure tension, a n , on both the composite and the 
comparison material . This leads to 

an = Euen for the composite, and 

ff1i = E0€i1, e22 = e33= - c 0
e i i for the comparison material. 

Since from (6) e n = e°n + c, eft, and eft is further given by 
(10), one finds 

E„ _ e?, 
E0 e^ + Cjefi 

1 

l+cl[Al-u0(A2+A3)]/A 
(13) 

3.2 Transverse Young's Modulus Along the Thickness of 
the Elliptic Cylinders E2 2 . For this we apply a22. A similar 
analysis leads to 

E22 = 1 

E„ l+Ci[A5-v0(AA+A6)]/A' 
(14) 

3.3 Transverse Young's Modulus Towards the Width of 
the Elliptic Cylinder E3 3 . Similarly, by applying a33, we 
have 

E33 

E 0 

1 

1 + C , [ J 4 9 - » 0 0 4 7 + , 4 8 ) ] A 4 
(15) 

3.4 Longitudinal Shear Modulus Parallel to the Surface of 
Thickness /t12. To determine this value we apply a pure shear 
stress <712 ( = ff2i)- The responses in the composite and the 
comparison material are now given by 

ff12 = 2 iii2e 12, and a i 2 = 2 n0e°2, 

respectively. Since e 12 = e?2 + cxe*2 and e*2 is related to e?2 

through (12), one finds 

3.8 Longitudinal Poisson's Ratio Toward the Edge of 
Width vu. This Poisson 's ratio is defined by e33 = - vl3 e n 

under the action of pure tension CTU. Following a similar con
sideration as in (19), one obtains 

VQ-CtlAT-voiAg + A^/A 
"13 = 

l+Ci[Ai-v0(A2+A3)]/A 
(20) 

3.9 In-Plane Poisson's Ratio v32. The property defines 
the contraction in the thickness direction under a tensile stress 
CT33; namely, e22 = - c 3 2 £33. As in (19) and (20), a parallel 
consideration leads to 

"32 = 

vo-cdAs-voiA^ + A^/A 
(21) 

\ + Ci\A9-vo(A1 + Ai)]/A 

With the compoonent of S-tensor given in the Appendix, 
equations (13) to (21) provide the variations of the nine in
dependent elastic moduli of the orthotropic composite as a 
function of volume fraction c, and aspect ratio a ( = t/w) of 
the elliptic cylinders. 

4 C o m p o s i t e s Re inforced W i t h M o n o t o n i c a l l y Al igned 

Ribbons 

When the aspect ratio of the cross-section of the elliptic 
cylinders approaches zero (a = t/w —• 0), the components of 
the S-tensor can be greatly simplified. The resulting nonvan
ishing components , now given in the Appendix (A2), are seen 
to depend only on the Poisson ratio of the matrix v0. The Ar 

components , which appear in most of the nine independent 
moduli , can also be simplified accordingly. After substituting 
the new S-components for ribbons into (8) for Bh and then 
into (11) for Ah one finds 

AX=A9=-
CQVQ 

( A " 1 ) ( A - A A ) 
_ l - " o 

- ( l + A ) ( c , + A ) ( A - i ) + A ( A + A)(< iA+A) 

- ( c , + A ) ( A + A - A - i ) - ( i + A ) ( c i A + A ) 

^ 2 = ^ 8 = ( A - A A ) [ c i ( i - A ) - ( A - A ) ] , 
r CQVQ 

A3 = A1=(D2-DlD3) 
J - " o 

( A - i ) - ( A + A - A - i ) 
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AA = A6 = cl(Dl-l)-(D2-D3) 

c0v0 

A, 

A 

l - " o 

c , ( A - i ) + ( A - A ) 

(Di-\)(.D2 + 2) + DlDi-D2 

( c , + A ) ( 2 - A ) 

c , ( A - i ) + ( A - A ) 

- A ( c , A + A ) . 

2 c0e0 

l - " o 
( A A - A ) 

+ 2(l + A ) ( c , + A ) - ( A + A ) ( c , A + A + A + c1) 

"(22) 

where, once again, cr is the volume fraction of rth phase, and 
A . A . ar>d A a r e given in (9). 

With these simplified Sijki components and A, values for 
ribbons, the nine independent elastic moduli given in (13) to 
(21) for the orthotropic composite can be written explicitly in 
terms of the elastic moduli and volume fractions of the two 
constituent phases. Keeping in mind that axis 1 is the longi
tudinal direction, axis 2 the direction perpendicular to the 
surface of the ribbons, and axis 3 the one extending to the 
width of the ribbons one finds, after some lengthy algebra, 

E11 = E33 = cIE1 + c0E0 + 
4 c 1 c 0 ( v 1 - c 0 ) 2 

:(— + -)+cJ~ + -) 
\«0 / W \«1 /*!/ 

(23) 

c1E,K1(K0 + /io) + c0E0Ko(/i:i + /ni) 

CiC0(/ii - Ko) [3(K I— Ko) — (M-I — /*O)1 + C, K i/i0 + C 0 K 0 ^ I + K J K 0 ' 

(24) 

"l2=l'32 = ClVl+C0V0 + 

J_ = _}_ = £L + £o 
A<12 A*23 **1 f * o ' 

clc0(v1- va) (VXIIQ- c0Mi) 

C 1 /X 1 ( l -J> 0 ) + C 0 H 0 ( l - J > i ) 

chilli (1 - y0) + c0yo^0( 1 - vx) 

Citi\{\-va) + cQix0(\-px) 

(25) 

(26) 

, (27) 

(28) 

where ~nr is the plane-strain bulk modulus of the rth phase. 
Equations (23), (25), and (27) indicate that, since the aspect 
ratio of the ribbons are taken to approach zero, directions 1 
and 3 are now on equal footing. In addition, the three in-plane 
properties are found to satisfy the isotropic constraint E n = 
2^,3 (1 + J-13). Thus, there are only five independent elastic 
moduli in this limiting case. 

A tedious examination on these five moduli also reveals that 
they are exactly identical to those of a laminated medium (see 
Christensen, 1979, p. 140, equation (5.8) after changing Cu to 
these moduli) and that the properties of the matrix and thin 
ribbons appear symmetrically. 

5 Effective Elastic Moduli of a Two-Phase Composite 
With Two-Dimensional Randomly-Oriented Elliptic 
Cylinders 

We now consider the case when the elliptic cylinders or 
ribbons are randomly oriented in the 2-3 plane as depicted in 
Fig. 1(b). The five independent elastic constants can also be 
derived by the mean-field theory outlined in Section 2, but, 
since the average stress in the inclusions, <r(1) in (3), is now 
orientation-dependent, slight modifications are necessary. 

While (1) and (2) remain unchanged, (4) should be referred to 
the local coordinates aligned along the three pincipal axes of 
the considered inclusion orientation, as 

where the primed quantities are referred to the said local co
ordinates, say along axes 1' -2' - 3 ' . 

Keeping axis 1' to coincide with the material axis 1, the 
directional cosines between the local /'-axis and the global j -
axis are 

Qu= 

1 0 0 
0 cos0 sin0 
0 - sin0 cos0 

(30) 

where 6 is the angle defining the orientation of inclusions. 
Then, the strain and stress components follow the ordinary 
transformation 

tij = QikQ0ki- ( 3 1) 

Following a similar analysis as outlined in Section 2, equa
tion (5) now takes the form 

5y = - c ,<<>, or e/j = - ci<eg' - e* > , (32) 

where < • > is the orientational average, with 6 varying from 0 
to ir, of the indicated quantity. Such a general relation has 
also been derived by Takao et al. (1982) in their study of the 
effect of fiber misorientation on the longitudinal Young's 
modulus. 

Likewise, equation (6) now becomes 

e(, = 4 + c1<€j->. (33) 

Thus, as in the unidirectional case, central to the determination 
of the effective moduli is the evaluation of <e,*>. This process, 
in turn, requires the information of efr* in the local coordi
nates. 

This can be accomplished by recognizing that the equivalence 
principle—or the last of equation (3)—continues to hold in the 
primed, local coordinates for the considered inclusion orien
tation. Then, following the same procedure as in (7) to (10), 
but keeping the primed iy together with the primed e°' , one 
arrives, in parallel to (10), 

6.1 + ?l'l 

eii + €22 | » (34) 

€33' + ^h , 

where, with the help of (11), constants a,- are given by 

aj = Aj and a = A by setting c{ = 0, 

and C0 = 1 in (11) and (8). (35) 

Similarly, the shear components can be readily established 
by way of (12), as 

( f l 2 + « 1 2 ) . 

e23 

0*r 
M0+2(/Z! 

0M-
A*o + 2 ( / i , 

0*r 

- f o ) 

— /*o)^1212 

-t*o) 

~/*o)Sl313 

-/*o) 

(e?3+«i3). 

(eli+eh), (36) 
f *0+2( / i ! -^ 0 )S2323 

by setting q = 0 and C0 = 1 in those equations. 
The orientational average <e,*> then can be evaluated from 

<e$>=^5d»^SoG«Q^'d0, (37) 

where e,*' are now given in terms of e°/ + e,j, which in turn 
are related to 4 + ey through the usual tensor transformation. 
After carrying out this process one has, for a general multiaxial 
loading, 
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< « f i > = -

<E22>= 7 -
8a 

ffl(efl+?ll)+ Z («2 + «3)(^22+ ?22 +€33 + 633) * 3 = 
al(S22n + S33u) + a4(S2222 + S3322- 1) 

4(a4 + a7)(e?, + eu) 

+ (3a5 + a6 + ag + 3a 9 - r ^ ~ 

• ( 4 + ?22) + («5 + 3a6 + 3a8 + «9 + 

J + A*o/(/*i — Mo) / 

8a 

2o 

8a 

2 ^2323 +Mo/ (Ml 

•(£33+ ?33) , 

4(a4 + a7)(e?1 + e„) + (as + 3a6 + 3as + a9 

• ) («22 + ?22) 
' / 

- M o ) / 

+ 07(S2233 + S3333-1) / ( 2 f l ) , 

(3a2 + a3)S221,+ (a2 + 3a3)S331, 

+ (3a5.+a6) (S 2 2 2 2 - 1) + (a5 + 3a6)S3322 

+ (3a8 + a9)S2233 + (a8 + 3a9) (S3333 - 1) 

1 2Sr 1 

8a 

2a 
2 5,

2323 + ^0/(Mi-Mo)/ 

+ ((3a5 + a6 + as + 3a9 -
2Sr 

2a \ 

I + M O / ( M I - M O ) / 
( 4 + ?33) 

<e f 2 >=-2 

<«fi> = -

1 

2 Si212 + /i0/(Mi-Mo) 

1 

1 -

4 2S2323 + M o / ( M ] - M o ) ' 

(a2 + 3a3)S2211 + (3a2 + a3)533n 

+ (a5 + 3a6) (S2222 - 1) + (3a5 + a6)S3m 

+ (a8 + 3a9)S2233 + (3a8 + a9) (S 3 3 3 3 - 1) 

, 1 2 ^2323 ~ 1 
4 2S2323 + Mo/(Ml-Mo) 

2 ^1212— 1 , 2 ^1313 1 

2 S1313 + / i 0 / ( / i 1 -^ 0 ) . 

1 

2 S1212 + ^0/(Mi-Mo) 

1 

<£2*3> = 

2 Sl3l3+Mo/(Ml-Mo) 

a 5 - a 6 - a 8 + a9 

4a 

1 1 

(e?2 + e12), 

(e?3 + e,3), 

( 4 + ?23)-

* 7 =1 + 

2 S12i2 + ^o/(/*i-/t0) 2 Si3i3 + Mo/(Mi-Mo). 

(a2 — a3) (52211 —S33U) 

+ (a5 — a6) (S2222— S3322 — 1)+ (a8 — a9) (S2233 — S3333+ 1) 

c\ IS- 2323 " 1 

2 2 S2323 + M o / ( M i - M o ) ' 
(42) 

(38) 
2 2 S2323 + /i0/(Mi-Mo)-

It is now evident that in order to determine <e,*>, we must 
find eg + e,7, or e,7 first. The last quantity is given by (32); 
when cast in the integral form, it reads 

= - I Jo QkiQ,j(Sklmn-Iklmn)e*m'nd6, (39) 

where Iklm„ is the fourth-rank identity tensor. This integration, 
after some rearrangements, leads to 

l+c ,6 , cxb2 cxb2 'e„ + 6. 
c,i3 l + c,64 c,Z>5 J I ê 2 + e22 

c,b3 c{b5 1 + C164 / \e53 + e33 

Now that <e,*> is given in terms of eg- + e,7 by (38), and 
which in turn is given in terms of eg by (40) and (41), we are 
in a position to evaluate the five independent elastic moduli: 
En. M12. M23. "12. and K23. 

5.1 Longitudinal Young's Modulus En. For this we ap
ply a uniaxial stress an to both the composite and the com
parison material. As in (13), one finds 

Mil = ± (43) 

where <en> is given by the first of (38), in which eg + e,7 are 
given in terms of (40), with ê 2 = e?3 = - c0e?i for the pure 
tension. It follows that 

<efi>=,Piie?i, (44) 

&i(ci&4 + ci&5+l) - 2 cfab?, - 2 vQb2 

where 

« i 
1-c, 

aj + aj 

(Ci&1 + l)(c,64 + c 1 6 5 + l ) - 2 c\b2b3 

b3-vQ(b4 + b5)(Cibi + 1) + 2 v0Cib2b3 

(40) 

and 

*6(e?2 + ?l2) = ei2. . 

b6(€°i3 + en) = e°n, 

b1(e°23 + ~e2i) = t2i, 

where 

b\= -ax/a, 

b2=-(a2 + a3)/(2a), 

"0 + Cl" (Cibi + lXcibt + cfis+l)-! c2!b2b3 

The longitudinal Young's modulus is then given by 

111 = 1 
E 0 I+C1P11' 

(45) 

(46) 

(41) 5.2 Longitudinal Shear Modulus Parallel to the Axis of 
Cylinders /in (= Mw)- N o w w e apply bl2 (= &2i), to yield 
e?2 (= e$i)> with other eg = 0. The shear modulus is given by 

M12 

Mo e?2 + c,<ef2> 
(47) 
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After evaluating <ef2> from (38) and (41), one finds 

<«*2>=^i2«l: (48) 

where 

P i 2 = -
1 1 

2 S12l2 + Mo/ ( / i l - ^o ) 2 Si313+ ^ 0 / ( ^ , - ^ 0 ) . 

2 S1212— 1 
2 -c , 

2 $1212 +Ik)/(l*l-Ho) 

2 S1313— 1 

2 S1313 + ^0 /(^i-Mo). 

The axial shear modulus then follows as 

£12 _ 1 
lk> 1 + CiPn' 

(49) 

(50) 

5.3 Transverse Shear Modulus in the Isotropic Plane 
H23. For this we apply a23 to yield e§3. The effective shear 
modulus is then given by 

" * • - * ( 5 1 ) 
Ho $3 + Ci<eh)' 

From (38) and (41), we can write 

<e23) =P23e23> 

with 

P23 = 
~as-a6-ag + a9 1 1 

4a 2 2 S2323 + n0/(ni 

It follows that 

H23 1 

Ho 1 + c&23' 

-Ho)-
/ 6 7 . (52) 

(53) 

5.4 Major Poisson's Ratio vn (= v13). This property de
fines the lateral contraction of the composite under a pure 
tension on, and is defined as 

£22 = _ 4a + Ci<e2*2> 
"12 = tii+c&uy (54) 

where E\2 = ~~ ^ V The connection between (eft) and e?, is 
already given by (44), and for <e22> it can be found from (38) 
and (40) to be 

<«£>=f t i * . (55) 
where 

6, (0,64 + 0,65 + 1 ) - 2 c,6263 - 2 u0b2 
P21 = 

a4 + a7 

2a 
1-c , . 

"0 + C] 

(c,6, + 1X0,64 + 0,65+ 1 ) - 2 c?6263 

2a 

63->'o(64 + ft5)(Ci6i + l) + 2 v0cxb2b3 

(56) 

(c,6, + 1X0,64 + 0,65 + 1 ) - 2 c?6263 

The major Poisson's ratio then follows as 

"12 = 
VQ-C\P2l 

I+C1P11 ' 
(57) 

5.5 Plane-Strain Bulk Modulus K23. To determine the 
plane-strain bulk modulus /c23> we apply ir22 = CT33 and set e,, 
= 0 on the composite. To fulfill the latter plane-strain con
dition, a longitudinal stress bn = vl2 (b22 + <r33) must be 
applied on the composite, and also on the comparison material 
to provide the same by. The plane-strain bulk modulus of the 
composite is defined through 

^ 2 2 + ^ 3 3 = 2 K 2 3 (€ 2 2+ 633), Or ff22 = 2 K2 3€2 2 . (58) 

The strain components in the comparison material are 

«22 = «33 = ffatl - v0(l + 2 vl2)y&o, 

e?, = 2 ff22(j-i2-y0)/E0. 

It then follows from (58) and (59) that 

K23 = (l + y0)(l-2y0) e°22 + e°33 

«o 1-VQ(1+2V{2) e22+"e3i' 

(59) 

(60) 

where the relation E0 = 2 (1 + c0) (1 - 2 c0) ~Ko has been 
used. 

Since e 22 + e 33 = e22 + e33 + c, < e22 + e33 > , we need 
to evaluate the orientational average. From (38), (40), and 
(59), one can write 

<e2*2 + e!3>=p23<e°22 + e°33>, (61) 

where 

P23 = 
a4 + a7 " 1 2 - " 0 

a / 1-«/„(!+2v12) 

h+, "'I , 1 . J 6 , (0,64 + 0,65+1)-2 o,6263]' 
l - c o ( l + 2 c i 2 ) 

(0,61 + 1X0,64 + 0 , 6 5 + 1 ) - 2 c?6263 

i a5 + a6 + a7 + as 

2b3(vl2-p0) 

1 - v0(l + 2vl2) 

2a 

+ (q6 , + IX64 + 6 5 ) - 2 c,6263" 

/ (c,6, + 1X0,64 + 0,65+1)- 2 c?6263 

The bulk modulus then follows from (60), as 

K23 _ ( l + K 0 ) ( l - 2 P0) _ 1 

«0 

(62) 

(63) 
l - j / 0 ( l + 2 vn) l +c ,p 2 3 

where the major Poisson's ratio vl2 is given in (57). 

6 Composites Reinforced With Two-Dimensional 
Randomly-Oriented Ribbons, and the Realization of the 
Hill-Hashin Bounds 

When the cross-sectional aspect ratio approaches zero, the 
elliptic cylinders become thin ribbons and the a,- and 6,- com
ponents, which appear in the five independent elastic moduli, 
can be greatly simplified. Again, using the nonvanishing com
ponents of the S-tensor listed in Appendix (^42), we have 

a,:=Aj and a = A by setting c, = 0 and c0= 1 in (22) (64) 

for the ten a,- coefficients. Also, with these simplified SiJkl com
ponents, one can deduce from (42) the following expressions 
for 6,-

6,= - a , /a, 

b2 = 

63 = 

(a2 + a3)/{2a), 

1 

2(1 - v0)a 
[ c 0 f l , - ( l - 2 v0)a3], 

6 6=1 + 

6 7 =1 + 

-3«,-«2 + 

-a,-3«2 + 

CiJHi-Ho) 

"0 

-"0 
(a, + 6«2 + «3) 

"o 

•v0 

(3a, + 2«2 + 3a3) 

2 Ho 

4a(\-v0) 
[-ai+a2+u0(a2-a3)]. (65) 
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These simplified expressions allow one to write the five in
dependent elastic constants more explicitly for the ribbon-
reinforced composites. 

This process involves the simplification of the five param
eters pu, pl2, Pz$, p2i, and p23 given in the preceding section. 
After some lengthy algebra, we found that the five elastic 
constants of the transversely-isotropic composite can be written 
as 

E11 = c,E1 + c0E0 + 

Mi2 = Mi + 

4 c 1 c 0 ( y 1 - p 0 ) 2 

K0 KX Hi 

Co 

1 

M23 = Ml + 

/C 2 3=Kl + 

Co 

2/*i 

1 Ci(Ki + 2jHi) 

M l - / * 0 2^!(«: ] + / * ! ) 

Co 

1 c, ' 

K 1 - K 0 « 1 + M l 

CiC0(vi-v0)( — 

Vi2 = ClVl+C0V0 + 
( - — ) 
\ « 0 K l / 

£i + Co + J_ 
k0 K, HI 

(66) 

(67) 

(68) 

(69) 

(70) 

Upon inspection, it becomes evident that these expressions 
coincide with those of the Hill (1964) and Hashin (1965) bounds. 
Indeed, when the ribbons are harder than the matrix, such that 
«! > K0 and n\ ^ wo> the four moduli E n , Hn> M23> a n d "23 
coincide with their upper bounds. For the major Poisson ratio, 
it also coincides with Hill's upper bound if v\ > P0, but if vx 

< p0—as in many fiber/polymer matrix cases—it will coincide 
with his lower bound. However, if we write the bounds of pl2 

in Hill's original forms, again assuming HI > Mo 
c lCp vn-(.C\V\ + c0pQ) 

K0 Kt H0 

Co) ( l _ l ) - £ L + 5 . + l 
\ K o «-l/ K0 Ki Hi 

so that the bounds of-
V\l-(C\Pl+C0P0) 

( " i ~ " o ) 
\ * 0 " 1 / 

- are sought for, the 

(71) 

present result—as for the other four moduli^will also coincide 
with Hill's upper bound. 

On the contrary, if the ribbons are softer than the matrix, 
the five independent elastic moduli—with the bounds J>12 ex
pressed in the form of (71)—will coincide with Hill's and Hash-
in's lower bounds. 

The fact that ribbons provide a superior reinforcement than 
fibers here is similar to the conclusion reported by Christensen 
(1979) on the superior platelet-type reinforcements in the three-
dimensional isotropic composites. 

7 Numerical Results 
It is now of interest to see how the shape of the reinforcing 

phase—when it changes from circular fibers (a = 1) to thin 
ribbons (a — 0)—would affect the nine elastic constants of 
an orthotropic composite and the five of a transversely iso
tropic one. To this end we used the properties of glass fibers 
and epoxy matrix in our calculations. The elastic constants are 

/c0 = 3.07GPa, ^0=1.02 GPa, or E0 = 2.76GPa, 

c0 = 0.35, 

K, = 40.2 GPa, HI = 30.2 GPa, or E, = 72.4 GPa, 

j»! = 0.20. 

The corresponding plane-strain bulk modulus of course can 
be evaluated from the usual isotropic relation, K = /x/(l -
2P), for each phase. The values of a = 0, 0.01, 0.1, 0.5, and 
1 were chosen for demonstrations. 

The nine normalized elastic constants of an orthotropic com
posite as a function of ct are depicted in Figs. 2 to 4. In these 
figures, the three tensile Young's moduli are grouped into one, 
the three shear moduli are grouped into the other, and the 
three Poisson's ratios are put together as the third, each having 
the same scale. In reading these results, we are reminded once 
again that direction 1 is the infinitely extended direction, di
rection 2 is perpendicular to the surface of the thickness, and 
direction 3 is along the width. As the aspect ratio decreases 
from 1 to 0 it is evident, from Fig. 2, that it has very little 
effect on E n and E22, which apparently can be well represented 
by the rule of mixture for the moduli and for the compliances, 
respectively. The Young's modulus, E33, along the width di
rection is seen to be very sensitive to a, and continues to 

E33/E0 

a=y / / 1 

/0.01 / // 

°/ 1 

C1 0 

Fig. 2 The variations of the three Young's moduli of the orthotropic 
composite 
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Fig. 3 The variations of the three shear moduli of the orthotropic com
posite 

Fig. 4 The variations of the three Poisson's ratios of the orthotropic 
composite 

increase as the thickness of the elliptic cylinder continues to 
decrease, approaching the linear dependence as a —• 0. Of 
course, when a = 0, E33 = EH and when a = 1, E33 = E22 

as required. 
The variations of the three shear moduli are shown in Fig. 

3. The shear modulus ^ I3 is seen to be particularly sensitive to 
the aspect ratio, but moduli /z12 and /̂ 23 are less so. On the 
other hand, if we read the axial moduli /uI2 and /n13 together 
we see that, as the "shape" of the shearing surface of the 
elliptic cylinder change from a "flat" surface (a = 0 in /x12) 
to a sharp edge (a = 0 in ^13), the shear modulus increases 
dramatically. These two limiting conditions approach those of 
constant stress and constant strain distributions, respectively, 
thereby exhibiting such a consequence. It is also noted that ixn 

= )Mn when a = 1, and that /x,2 = ^23 when a = 0, as expected. 
The three Poisson's ratios are depicted in Fig. 4, with all 

three showing strong sensitivity to the aspect ratio a. Poisson 
ratio vu tends to increase when the aspect ratio decreases. As 
a decreases, the shrinkage in the 2-direction is more dominated 
by the behavior of the matrix (which has a higher Poisson's 
ratio than the fibers), and therefore such a trend is somewhat 
anticipated. The same argument may also apply to pn, which 
shows an opposite effect. However, in vn when a is low and 
in vn for all a, it appears that these two Poisson ratios can 
exceed those of both constituents over certain range of c,. Such 
a synergistic effect has also been reported by Hashin and Rosen 
(1964) for un, for the special case of circular fibers (a = 1). 

The five normalized elastic moduli for the two-dimensional 

randomly-oriented composite are shown in Figs. 5 to 9. The 
first four moduli, E u , fin, /*23, and K23, as already proven in 
Section 6, coincide with Hill's and Hashin's upper bounds for 
the thin ribbons (a = 0), and now since v1 < p0, the major 
Poisson's ratio vi2 also coincides with Hill's lower bound. 
When the aspect ratio becomes 1 such that the reinforcing 
phase is in the form of circular cylinders, these four constants 
have been shown to coincide with Hill's and Hashin's lower 
bounds if the inclusions are the harder phase (see Tandon, 
1986 and Zhao et al., 1989) and the major Poisson's ratio vn, 
under the present circumstance (vx < v0), also coincides with 
Hill's upper bound. To show how the aspect ratio would affect 
the transverse Young's modulus E22 (= E33), we have also 
plotted its variations (by the usual transversely-isotropic re
lation; see, for instance, Christensen, 1979) in Fig. 10, which 
also shows a similar effect. Indeed it is evident that, with the 
exception of E u , the other four measures of stiffness — E22, 
/i12, fi2i and K23 — can all be significantly improved if the 
circular fibers are replaced by thin ribbons in the composite. 
Such an improvement can be very significant. For instance, 
from these figures at c\ = 0.2, these four moduli with ribbon 
reinforcement are, respectively, 2.0, 2.6, 2.1, and 1.8 times 
those reinforced with circular fibers. Generally speaking, the 
thinner the ribbons, the stiffer the composite. 

In closing it is sometimes desirable to see how the ribbon 
width would affect the overall properties of the composite. If 
the thickness and volume fraction of ribbons are to be kept 
constant, an increase in the ribbon width will have to be ac-
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K23/K0 

Hill&Hashin's upper boun^C-

Hill&Hashin's lower bound 

a=(K 

/ U 0 1 

ay 
^ir 

^ . 5 

—i 

Fig. 5 The variations of the longitudinal Young's modulus of the trans-
versely-isotropic composite 

Fig. 8 The variations of the plane-strain bulk modulus of the trans-
versely-isotropic composite 

20-

10-

0 -

,til2//j0 /I 

// \ 
Hashin's upper b o u n d / / / / 

a = 0 / / / / 

// / J/ s//€a\ // // 
/ ^ ^ ^ ^ ^ t ^ 

^ — — - j = = = = ^ 7 = IHashin's lower bound 

Fig. 6 The variations of the axial shear modulus of the transversely-
isotropic composite 

fill's upper bound 

0.2 0.4 

Fig. 9 The variations of the major Poisson's ratio of the transversely-
isotropic composite 

/u23//i0 

Hashin's upper bounc/ / / 

a=y / / I 

/\/o.m / / 
-^^ 3^\,/ 

Hashin s lower bound 

Fig. 7 The variations of the transverse shear modulus of the trans-
versely-isotropic composite 

Fig. 10 The variations of the transverse Young's modulus of the trans-
versely-isotropic composite 

companied by a decrease in the total number of ribbons in a 
reciprocal way. Then, due to the reciprocal relation between 
the ribbon width and the aspect ratio (at a constant t), the 
influence of ribbon width can be directly deduced from that 
of the aspect ratio. 
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A P P E N D I X 

Components of Eshelby's Sjjkl Tensor for an Elliptic 
Cylinder 

Taking axis 1 to be infinitely extended, axis 2 along the 
thickness and axis 3 along the width of the elliptic cylinder, 
and defining the aspect ratio a to be the ratio of thickness to 
width (a = t/w), one has 
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and other Sijkl = 0, where v0 is the Poisson ratio of the matrix. 
When the elliptic cylinders exist in the shape of thin ribbons, 

so that a = t/w — 0, the above components can be simplified 
to 

•Jllll = ,J1122 = 'Sll33 = 'S3333 = S3311 = S'3322 = Sl313 ~ 0 , 

•J2222 = 1 > 

J2211 —^2233 •J2233 — n> 
i - V 

S1212 - S2323 — - 1 

other SiJk,= 0. (A2) 
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Effects of Interleaves on Fracture 
of Laminated Composites: 
Part I—Analysis 
The influence of placing interleaves between fiber-reinforced plies in multilayered 
composite laminates is investigated. The geometry of the composite is idealized as 
a two-dimensional, isotropic, linearly elastic media consisting of a damaged layer 
bonded between two half-planes and separated by thin interleaves of low extensional 
and shear moduli. The damage in the layer is taken in the form of a symmetric 
crack perpendicular to the interface. The case of an H-shaped crack in the form of 
a broken layer with delamination along the interface is also analyzed. Fourier integral 
transform techniques are used to develop the solutions in terms of singular integral 
equations. 

1 Introduction 
Laminated fiber-reinforced composite materials such as 

Graphite/Epoxy are being used extensively in aircraft struc
tures and are replacing many metallic components. This is 
mainly due to their potential for reducing weight and the ca
pacity to be tailored to optimize the structural strength and 
stiffness. However, due to the fiber and matrix interaction and 
the multi-ply configuration of such composites, the mechanical 
behavior is quite complex and has challenged the designer with 
a new class of problems. One particular area which has received 
considerable attention in the past decade has been their low 
tolerance to interfacial damage. This type of damage, fre
quently caused by impact, is a common and an unavoidable 
occurrence during manufacturing, maintenance, and service 
of aircraft structures. 

One suggested method, discussed by Masters (1985) and Sun 
(1985), to improve interfacial damage tolerance is to place thin 
films of adhesive, called interleaves, between those plies where 
delamination is more likely to occur. This concept is illustrated 
schematically by Masters (1985, Fig. 2). An interleaf typically 
has a large shear failure strain and remains a separate layer 
between plies after curing, unlike the epoxy matrix used in the 
prepreg plies. Experimental results reported by Masters (1985) 
and Sun (1985) do indeed indicate that such adhesive layers 
are effective in reducing the size of interply delamination as 
well as in increasing the load required to initiate delamination. 

These studies indicate that low velocity impact results in 
transverse matrix cracks in the 90 deg plies due to the tensile 
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strains caused by bending. When these cracks intersect the 0 
deg plies they may initiate delamination at the ply interfaces. 
If the ply thickness is small compared to the laminate thickness 
and the damaged ply is away from the midplane, the tensile 
stress gradient will be small over the ply thickness. The ap
proximation of a uniform tensile strain then should give a good 
measure of the influence of the crack and the interleaf on 
delamination. An analytic solution of this problem has, how
ever, not been given adequate treatment. A detailed solution 
is certainly necessary in order to develop an understanding of 
the influence of the various material parameters on the be
havior of interleafed composites. This is the primary focus of 
the present study. 

A number of related problems have been solved based on 
various forms of two-dimensional or axisymmetric approxi
mations. Sneddon and Srivastav (1971) solved the problem of 
a transverse crack in a strip of finite width. Gupta and Erdogan 
(1974) considered the problem of two symmetric edge cracks 
in an infinite strip. Hilton and Sih (1971) studied the problem 
of a strip bonded to two half-planes of different materials with 
a crack perpendicular to the interface. Bogy (1973) considered 
the same geometry as Hilton and Sih (1971) and discussed the 
dependence of the solution on material parameters. Both the 
solutions by Bogy (1973) and Hilton and Sih (1971) allowed 
only embedded cracks. Ashbaugh (1973) and Gupta (1973) 
reconsidered this problem with the added condition that the 
crack could propagate up to the interface. Erdogan and Back-
ioglu (1977) solved the fracture problem of a composite plate 
consisting of perfectly-bonded parallel load-carrying laminates 
and buffer strips. Gecit and Erdogan (1978) relaxed the prop
erty of a perfect bond between plies and studied the effect of 
the thickness and elastic properties of adhesive layers between 
plies in laminated structures. The problem of two dissimilar 
elastic bonded half-planes containing a perpendicular crack 
terminating at the interface was studied by Cook and Erdogan 
(1972). Goree and Venezia (1977) extended this study to include 
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an interface crack that grows along the interface as well as 
crosses the interface. Lu and Erdogan (1983) looked at a related 
problem for the geometry of two dissimilar infinitely long but 
finite width strips. 

The intent of this study is to develop a fracture and crack 
growth model based on the methods used in the above studies, 
and then investigate the predicted influence of an interleaf on 
damage growth in a laminated composite. The composite is 
approximated by two isotropic half-planes separated from a 
finite width layer by thin interleaves (Fig. 1). This is an ideal
ization of a general laminated composite where one concen
trates on a single damaged layer, while the outer layers are 
approximated by half-planes with average elastic properties. 
A uniform tensile strain is assumed to be applied to the com
posite in the ^-direction. A typical composite is actually mul-
tilayered and orthotropic. The approximation of isotropic, 
linearly elastic media gives a more tractable formulation and, 
along with a proper choice of material and geometrical pa
rameters, should assist in understanding the influence of the 
interleaves on damage growth. 

The interleaf is modeled as uncoupled distributed tension 
and shear springs. Gecit and Erdogan (1978) used this spring 
model to solve the problem of periodically-arranged dissimilar 
layers separated by thin adhesive layers with crack perpendic
ular to the interface. However, this approximation was used 
only for the case of embedded cracks in the layers. For the 
case of cracks up to the interface of the layers, the spring 
model was replaced by an elastic continuum. This made the 
formulation and the solution cumbersome. Including delam-
ination along the interface, which was not considered in their 
study, with a continuum model for the adhesive layers, would 
involve further complexity in algebraic manipulations and 
analysis. Other mathematical difficulties involved in including 
delamination would be the classical singular and oscillatory 
stresses near an interface crack tip. The stresses undergo in
finite reversals of sign as the crack tip is approached, and it 
is also implied that the crack surfaces overlap near the crack 
tip which is physically inadmissible. A short literature survey 
of problems, with such singularities, is given by Comninou 
(1977). Comninou (1977) reconsidered the problem of a trac
tion-free interface crack between two dissimilar half-planes in 
a tension field in an attempt to explain the oscillatory stresses 
near the crack tip. She assumed that the crack was not com
pletely open and that the faces were in frictionless contact near 
the crack tips. She solved the resulting integral equations for 
the length of the contact zone and obtained crack tip stresses 
free of oscillatory singularities. Recently, Gautesen and Dun-
durs (1987) obtained an exact solution for the integral equa
tions developed by Comninou (1977). Knowles and Sternberg 
(1983) solved the same problem (Comninou, 1977) using the 
nonlinear theory of elastostatic plane stress. The crack was 
found to open smoothly near the crack tips, where the stresses 
were singular but not of oscillatory type. The spring model, 
on the other hand, removes this behavior and also simplifies 
the mathematical nature of the model. This simplification is 
made at the expense of approximating the shear and normal 
stresses as being constant through the thickness of the interleaf. 
If an average or point-stress failure criterion is used, then such 
an approximation is justified. The resulting stresses in the 
adhesive are finite everywhere, while stresses with logarithmic 
singularities are shown to occur in the half-planes and the layer 
at the interface crack tips. 

Based on these approximations, a general formulation is 
developed for plane strain and generalized plane stress. The 
displacement and stress fields are expressed in terms of Fourier 
transforms and, by using Fourier inverse transform techniques, 
the solution is obtained in closed-form in terms of integral 
equations. 

Three cases, depending on the extent of damage, are studied 

Journal of Applied Mechanics 

BROKEN PLY 

Fig. 1 Laminate with a broken ply under bending and geometry of the 
problem 

in this work. In the first case the center layer is assumed to 
have a symmetric, traction-free embedded crack along the x-
axis; in the second case the crack is assumed to cross the layer 
and intersect the interface, and lastly, damage in the form of 
a broken layer with symmetric delaminations along the inter
face is examined. The behavior of stresses at critical locations, 
for example at the crack tips, is studied to understand the 
influence of the relative material properties and the geometry 
of the interleaf and the plies. The geometry is shown in Fig. 
1. 

The formulation of the integral equations and a discussion 
of the behavior of the solution in the vicinity of the crack tips 
will be presented. Some of the very lengthy algebraic expres
sions and the details of the manipulations have been omitted 
from this paper to save space. It is hoped that the significant 
points are covered in sufficient detail though, and that the 
resulting behavior is clearly described. The complete devel
opment, including all intermediate steps, is contained in the 
first author's Ph.D. dissertation (Kaw, 1987) and in the cor
responding NASA report. The authors will gladly supply a 
copy of this work to any interested reader. 

2 Formulation and Singular Behavior of Solution 

Consider a laminated composite (Fig. 1) in plane strain or 
generalized plane stress consisting of a single damaged layer 
(Material 1) of width "2h", Young's modulus Er and Poisson's 
ratio vx; half-planes (Material 2) having Young's modulus E2, 
and Poisson's ratio v2\ and thin interleaves of thickness " / " , 
Young's modulus E3 and Poisson's ratio c3. 

The composite is assumed to be loaded parallel to the .y-axis 
with uniform remote stresses px and p 2 as shown. The applied 
stresses are related such as to give uniform remote strains in 
the j-direction. Hence, pt/p2 = E]/E2 for generalized plane 
stress; p{/p2 = [(1 - P2

2)E,] / [(1 - i>i2)E2] for plane strain. The 
solution to the problem of a stress-free crack and loads applied 
far away from the crack can be obtained by superposing the 
solutions of two problems. Let S, be the solution to the problem 
of the composite without cracks and loaded with uniform 
remote stresses/?, andp2 . The solution of this problem is simply 
a uniform tensile strain throughout the composite. Assume Sn 

to be the solution to the problem of the composite with damage 
and having no remote applied loads but with a uniform 
compression of magnitude px on the transverse crack surface. 
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The complete solution of the problem is, hence, given by Slotal 

= S] + Sn. The intent of this study is to find the solution Sn . 

2.1 Displacement and Stress Field Equation. The dis
placement field for a cracked layer is derived by adding the 
Fourier transform solutions for an infinitely long, uncracked 
strip and an infinitely large body with a crack. (Sneddon and 
Lowengrub, 1969) and is given by 

u{(x,y) = - 2 pn fi(v)--Lr-gi(v) sinh(r/x) 

+ Arg!(T))cosh(r)x) cos(rjy)c?r) 

0 ' ^ ( ^ -b)e-t*nOxW, 

cosh^x) "«^) = flo"S[ / l( ,')+fT lft(,'). 

+ xgi(ri)sinh(rix) sin(7y)efy 

The corresponding stress field is given by 

(1«,6) 
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+ WiOO sinh (ipc)} cos (iy)rfij 
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+ WiO?) cosh (rj*)) sin (iy)*? 

- | ] 0 W i t O e - " sin ($*#{. (2a-c) 

Similarly, the displacement field for the half-plane is 

u2(x,y) = -

v2(x, 

2 pn 
ir J° Iv 

AO?) + ^ — &>0?) 

+ xg2(-n) [e~ix cos (yy)dri, 
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g2(n) 
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The corresponding stress field equations are given by 
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In equations (2) and (4), /*,-, (/ = 1,2) is the shear modulus, K, 
= 3-4J</, (i = 1,2) for plane strain and K, = (3 - y,)/(l + c,), 
((' = 1,2) for generalized plane stress and vh (i = 1,2) is the 
Poisson's ratio. 

The unknown functions/!, glt 4>i,f2, and g2 in the displace
ment and stress field equations (l)-(4) are determined by ap
plying appropriate boundary and continuity conditions relating 
to the problem. The solution is obtained in terms of singular 
integral equations. 

2.2 Derivation and Solution of the Integral Equa
tions. Three cases related to the extent of the damage are 
investigated. The first case deals with a symmetric transverse 
crack of length "2a" (a < h) located centrally along the pr
axis. In the second case, the crack can extend up to the interface 
(a = h) and represents a broken layer. The last case accounts 
for a crack up to the interface (a = h) along with symmetric 
splitting of length "2c" parallel to the .y-axis at the interface 
(x = ±h) (Fig. 1). This last geometry is commonly called the 
H-shaped crack. The nature of the damage effects the conti
nuity and boundary conditions of the problem. Hence, each 
case is studied separately. An asymptotic analysis is carried 
out to study the singular behavior of stresses and displacement 
slopes in the vicinity of the crack tips. 

2.2.1 Crack Within the Layer (a < h) . As discussed in 
Section 1, the interleaves are modeled as uncoupled distributed 
tension and shear springs and the stiffness of these springs is 
given (Gecit and Erdogan, 1978) as 

K„ = E0/t, Ks = ix3/t, (Sa.b) 

where E0 = E3/(l - v3
2) for generalized plane stress and 

E0 = E3(l - e3)/[(l + J>3)(1 - 2*>3)] for plane strain. 
By modeling the interleaf as springs, the transverse and shear 

stresses are constant through the thickness of the interleaf. 
The continuity conditions along x = h are then written as 

o\y(h,y) = a2
xy{h,y), o)J)iy) 

= aUh,y), 0<l.yloo, (fia.b) 

oUhJ) = K^ih^-u.iKy)}, 0<b>loo, a a) 

axy{h,y) = Ks[v2(h,y) - vtfj)], 0<\y\<». (lb) 

The homogeneous boundary conditions along y = 0 are 

oxy(x,0) = 0, \x\ < h, a2
xy(x,0) = 0, \x\>h, (8a,b) 

v2(x,0) = 0, 1*1 > h. (8c) 

The mixed boundary conditions along y = 0 are 

ayy(x,Q) = - /?(*) 1*1 < a, (9) 

v^xfi) = 0, a < \x\ < h. (10) 

The crack surface traction is assumed to be constant for this 
study and is given by p(x) = pu However, the problem is 
formulated here for the general case of a symmetric function 
of "* , " where p(x) = px is a special case. 

Substituting the stress and displacement field equations (1)-
(4) in the continuity conditions (6) and (7), and taking the 
inverse Fourier transforms in "y" yields the following simul
taneous equations: 

«/i/i(l) + fffl£i(>7) + "nMn) + aiAg2(ri) 

= A0?)> (i = l, . . . , 4 ) , ( l l ) 

where a,y, (i'= 1 4) and Dh (/= 1 4) are given by 
Kaw (1987, Appendix B). 

The boundary condition (10) may be expressed as 

= 0, a < \x\ < h. (12) 

Taking the Fourier cosine transform of equation (12) gives 
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* l t t ) 2 [" 
(t) cos £t dt. (13) 

By solving the algebraic equations (11) and using equation 
(13), the stresses and displacements can be written in terms of 
the unknown displacement function, v(t). The boundary con
dition (9) can then be written as 

]-aTT^dt+ yaKn(Ux)v(t)dt 

•K{\+Ki)p{x) 

• 4 / i i 
Ixl <a, (14) 

where Ku(t,x) is dependent on the solution of equations (11). 
Using integration by parts, the singular integral equation 

(14) can be expressed in terms of the slope of the crack-opening 
displacement, defined as 

The integral equation then has the form 

[" G(t) [" 
v(a)F(x) + )_a-^dt+ ]_aG(t)Kn(t,x)dt 

i rp (x ) ( l + Ki) 

4/*i 
Ixl < a, (16) 

where F(x) and Kx \ are functions which depend on the solution 
of equations (11). A detailed description of these functions 
can be found in Kaw (1987), where it is also shown that the 
six material constants can be reduced to four (Dundurs, 1967). 

It is now assumed that the slope of the crack-opening dis
placement function, G(t) is given by 

G{t) = 
H(t) 

(c?-t2)i 
If I < a, 0 < Re 7 < 1, (17) 

where H(t) satisfies the Holder conditions (Muskhelishvili, 
1953). By studying the dominant part of the integral equation 
(16), (Gupta, 1973; Kaw, 1987) the solution is found to be 
given by y = 1/2. The singular integral equation (16) may 
then be expressed as 

1 H(t) 

~"^a2-t2 
— + Kn (t,x) dt 

IT(1 + K{)P(X) 

4/*i 
(18) 

Since the index of the integral equation (16) is + 1 (Erdogan, 
Gupta, and Cook, 1972), the solution will contain an arbitrary 
constant, which is determined by the single-valuedness con
dition 

G(t)dt = 0. (19) 

The normal (cleavage) stress, ayy(a + ,0) at the crack tip, then 
has the classic square-root singularity (Kaw, 1987, Appendix 
C). The mode I stress intensity factor, Ku is defined, following 
Erdogan (1972) as 

K, lim V ^ a) Oyy (X,0). (20) 

2.2.2 Crack Up to the Interface (a = h). The boundary 
and continuity conditions for the crack extending up to the 
interface remain the same as for the case of the crack within 
the layer as discussed in Section 2.2.1. Hence, the governing 
singular integral equation (16) is valid for this case too. How
ever, the Fredholm kernel Ku(t,x) becomes unbounded as x 
— h and f —• + h or x — h and t -~ -h, simultaneously. The 
unbounded terms in Kn(t,x) are due to the asymptotic behavior 

of the integrand defining K\{(t,x). The coefficient F(x) ofv(a) 
(a = h) in equation (16) also becomes unbounded as x —• h 
or x — -h. The unbounded terms in F(x) are due to the 
asymptotic behavior of the integrand defining F(x). These 
functions are examined in detail by Kaw (1987). 

The behavior of the slope function, G(t) at the end points 
can be found by considering the dominant part of the singular 
integral equation, which can be expressed as 

B<*>Io f(v,x)e-^dv + \_.G(t) 
1 

t-x 

+ Kf[(t,x) dt = B(x), \x\ < h, (21) 

where B(x) is a bounded function, and/^rj,.*) and Kf{(t,x) 
are given in Kaw (1987). 

Assume G(t) has an integrable power singularity at the end 
points t = ±h given by G(t) = H{t)/(ti1 -?)i, where 0 < 
Rey < 1 and H(t) satisfies the Holder conditions in [-h,h]. 
Using equation (21), and following Kaw (1987) and Gupta and 
Erdogan (1974), the characteristic equation obtained is 

- cos 7T7 + 2 72 - 4 7 + 1 = 0 . (22) 

This characteristic equation is independent of the material 
constants and is identical to the characteristic equation ob
tained for the solution of an edge crack in an infinite strip 
(Gupta and Erdogan, 1974). There are no roots of equation 
(22) in the acceptable range of 0 < Re y < 1, which implies 
G(t) does not have a power singularity. Hence, G(t) either 
has a logarithmic singularity or is bounded at the end points 
t = ±h. 

Assuming G(t) is a bounded function G(t) = H(t), where 
H(t) satisfies the Holder conditions in [-h, h\, and using 
equation (21), the following equation is obtained. 

v(h)[B5e
B6l>>-xnog(h-x) + B5e

s6(A+j;)log(/! + x)] = B(x), 
(23) 

where B5 and B6 are material constants (Kaw, 1987, Appendix 
B) and B(x) is a bounded function. This equality is possible 
only if the displacement at the end points, v ( ± h), is zero. This 
is not the case because the interleaf is modeled as distributed 
tension and shear springs, which allows the broken layer to 
displace at the end points under a uniform pressure, px on the 
cracked surface. Hence, G(t) cannot be bounded at the end 
points. This leaves only the possibility of a logarithmic sin
gularity for G(t). 

Assume G(t) has an integrable logarithmic singularity at t 
= ±h expressed as 

G(t) = H(t) log <m- \t\ < h, (24) 

where H( t) satisfies the Holder condition in the closed interval 
[-h,h]. Note that since G{t) is an odd function, H(t) must 
be an even function, that is H(t) = H(-t). 

Consider the sectionally-holomorphic functions 

P G(t) [h 

= 4>\{z) - Mz), 

H(t)log <m 
t-z 

dz 

(25) 

where 

H(t)log(h + t) 

t-z 

H(t)\og(h-t) 

t-z 

dt, 

dt. (26a,b) 

According to (Muskhelishvili, 1953, Chapter 4), near z = h, 
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</.,(*) = H{h) log(2/!) log(z- /0 + Uz), (27) 

where </>0(z) is a bounded function tending to a definite limit 
at z = h. Near z = -h, 

rh log(h + t) 
-h Uz) = H(h) 

t-z 
dt + bounded function. (28) 

Consider the function 

fi(z) = 
J _ f* log(ft + 

2m J-* f - z 
0 dt. 

Using the Plemelj formulas (Muskhelishvili, 1953), 

Q+(t0) - fi-(f0) = log(f0 + /i) for f0e [ - M l -

Also, 

co+(/0) - w-(^o) = -\og(t0 + h) for ;0£ [ - M L 

if 

0>(z) = 
1 {log(z + /Q)2 

2TT/ 
- log(z + h) 

0. 

Adding equations (30) and (31), 

(Q + OJ)+ - (fl + w)-

Therefore, the function [fl(z) + co(z)] is holomorphic in the 
neighborhood of z = —h, that is, near z = -h, 

(29) 

(30) 

(31) 

(32) 

(33) 

fi(z) = (log(z + /0) 2 

-log(z + A) 
2ir/ 

+ holomorphic function. (34) 

From equations (27) and (34), the behavior of 4>x{z) near the 
end points z = ± h is written as 

</>,(z) = //(A) log(2A) log(z-A) - ^ ~ [[log(z + /!))2 

- 27r/ log(z + h)] + holomorphic function. (35) 

Similarly, the behavior of </>2(z) near the end points z = ±h 
can be expressed as 

<h(pc) = H(h) Iog(2/0 \og{z + h) + ^ ^ - [log(z-/0P 

+ holomorphic function. (36) 

Applying the Plemelj formulas (Muskhelishvili, 1953) in 
equations (35) and (36), equation (25) is reduced for z = x, 
2h + x, and 2h - x. Using these results in equation (21), and 
separating the unbounded terms, 

[-B5e
B6V>-*> log(h-x) - 55e

s6<*+*>log(/j + x)M/!) 

-4H(h) [log(A-x) + log(A+jf)] = B(x), (37) 

where B(x) contains all the bounded terms. For the bound-
edness of the left-hand side of equation (37), it is required that 

H{h) = -^v(h) = -^±lK,v(h). 
4 4/i, 

Noting that 

axy(h,0 + ) = <r2
y(hfi + ) = 

Ki + 1 

K,v(h), 

H(h) = ^ 0 ^ , 0 + ) , 

then 

lim G(x) = ^ a' 
x~±h- 4^] 

o'rv (h,0 + ) lim log 
x— ±ft- a-

(38) 

(39) 

(40) 

(41) 

This proves the assumption that the slope, G(x) of the crack 
opening displacement function, v(x), has a logarithmic sin
gularity at the end points is correct. Note that the coefficient 
of the logarithmic term is dependent on the shear stress at the 
end point, (x = ±h, y = 0 + ). 

The present problem of a crack in the layer extending up to 
the interface can also be viewed as two semi-infinite strips with 
uniform pressure, pu applied on the end (y = 0), and unknown 
finite tractions on the longitudinal edges (x = ±h). These 
tractions depend on the elastic properties and geometrical pa
rameters of the strip, interleaf, and the half-planes. This ge
ometry can be compared with the known exact solutions for 
a semi-infinite strip (obtained from the free-body diagram of 
the classical half-plane \y > 0] problem with uniform pressure 
over a finite range, - h < x < h), with the following boundary 
conditions 

axy(x,0) = 0, ayy(x,0) = -pi \x\ < h, (42a,b) 

oxx(±h,y) El 
IT 

tan -

2hy 

a {±h,y) = T 

4h2+y2 

Pi Ah1 

y_ 
2h 

0 < / < o o , (42c) 

0<^<oo. (42rf,e) 
TT 4h2+y2' 

The solution to equations (42) is given by Timoshenko and 
Goodier (1970, Chapter 5) by using the Airy stress function 
method. The slope of the vertical displacement is given by 

dv(x,0) 

dx 
(«+l)Pi 

4 /ITT 
log (£$• 

or 

dv(x,0) 

dx 
K+l 
4p 

oxy(h,0 + )\og 
(h + x\ 

\h-x)' 

(43) 

(44) 

where ^ is the shear modulus, K = 3 - 4 e for plane strain and 
K = (3 - v)/{\ + v) for generalized plane stress, and v is the 
Poisson's ratio of the strip. 

It is interesting to note that both the problems have a log
arithmic singularity at the end points x = ±h. In fact, equa
tions (41) and (44) are identical expressions for the slope 
functions, G(x) at x = ±h. A finite nonzero shear stress at 
the points {x = ±h, y = 0 + ) is the reason for the logarith
mically-singular slope functions in the two problems. 

Also, the shear stress in the half-plane is discontinuous, 
nonzero, and finite at x = h, y = 0. Hence, the axial normal 
stress, ajy (h

+,0), is also logarithmically singular (Timoshenko 
and Goodier, 1970; Bogy, 1970) in the half-plane and is given 
by 

lim a2(x,0) = K lim \og(x-h) + Order (1), (45) 
x~h + x -A 4 

where K is a modified stress intensity factor given by 

K = - a ' (h,0 + ) = 
4Ksv(h) 

(46) 

The same expression is obtained by an asymptotic analysis by 
Kaw (1987, Appendix D). It is interesting to note that a dis
continuity in the normal loads on the half-plane does not 
produce unbounded stresses, but unsymmetric shear stresses 
do so at the point of discontinuity. 

2.2.3 H-Shaped Crack (a = h, c > 0). The damage 
considered in this case is a broken layer {a = h) with delam-
inations of length "2c" along the interface (Fig. 1). By in
cluding delaminations, only the continuity conditions (7) are 
different from those given in Section 2.2.1 and are given by 

")cx(h,y) = K„ < \y\-c > [u2{h,y)-ux{h,y)\, 

0 < \y\ < oo, (47) 

<Jl
xy{h,y) = Ks < \y\-c> [v2(h,y)-v{(h,y)\, 

0 < \y\ < oo, (48) 

where <a> = 0 if z < 0, <a> = 1 if a > 0. 
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Defining two unknown functions, <t>2(y) and </>30), by 

^ ^ T = a» (*«y) " KnWhj>) - II,(AOO], 

«! + 1 
0 < Ij'l < oo, (49) 

= < (^00 - i y i ^ O ' ) - vi(hj>)], 

0 < Ij I < oo, (50) 

2MI4>30) 

K, + 1 

the continuity conditions (47) and (48) can be written as 

°L{h,y) = 0, 0 < \y\ < c (51) 

2MI0 2 O) 

Kl+1 
= < c - \y\ > {a}a(hy)-Kn[u2{hy)-ul(hy)\} 

0 < lj>l < oo, 

aUh,y) = 0, 0 < \y\ < c, 

(52) 

(53) 

2/il<j>30) 
<c- \y\> laUh,y)-Ks[v2(h,y)-vl(h,y)]}, 

0 < \y\ < oo. (54) 

The homogeneous boundary conditions given by equations 
(8) are identically satisfied by the stress and displacement field 
equations (l)-(4). 

Following the same procedure given in the Section 2.2.1, 
the boundary condition (9) can be written in the form of a 
singular integral equation given by 

\-hTT~tfdt + \_hKuU,x)v(t)dt+\0Kn(X,z)<t>2(.z)dz 

+ \C
0Kn(x,z)Uz)dz = - *P(XW + Ki\ \x\ < h. ( 5 5 ) 

Similarly, after separating the dominant part of the kernels, 
equations (51) and (53) can be written as 

\_hK2l(y,t)v(t)dt+\0K22(y,z)Mz)dz - ~<t>2(y) 

lK- (y,z) Uz)dz = 0, O s l ^ k c , (56) 

]_hK3l(y,t)v(t)dt + )0 Ki2(y,z) 4>i(z)dz 

+ Jo *33 (y,z)Uz)dz - | <h(/) = 0, 0 < \y I < c. (57) 

The values of Ky, (/= 1,3, j= 1,3) are given by Kaw (1987). 
Using integration by parts, the singular integral equation 

(55) can be obtained in terms of the slope of the crack-opening 
displacement function G(x) = dv(x)/dx as 

dt 
[h G(t) 

hG(t) Kn(t,x)dt + J0 Kl2(x,z) 4>2{z)dz 

+ \j
C

0Ki3(x,z)Uz)dz= _ ^ ^ + K')> M < h . ( 5 8 ) 

Assume, in this case, that G(t) is a bounded function, then 

G(t) = H(t), (59) 

whereH(t) satisfies the Holder conditions in the closed interval 
l-h,H\. 

For c = 0 and a = h, equation (58) reduces to equation 
(16) obtained for the case of the crack up to the interface. 
Hence, the first three terms in equation (58) contribute the 
unbounded terms given by the left-hand side of equation (23), 
and are expressed as 

Ui(x) = v(h)[Bie
Bdh~x) \og{h-x) + B5^

h+x)\og{h + x)\. (60) 

The unbounded terms contributed by the fifth term of the 
singular integral equation (58) are given by 

U2(x) \QKVi(x, z) fc(.z)dz, (61) 

where Kfi(x,z) is the unbounded part of Kn{x,z). The un
bounded part contributed by the fifth term in the integral 
equation (58) is found to be (Kaw, 1987) 

U2(x) = -03(O)Iog(A-jf) - 03(O)log(/! + x) 

+ holomorphic function. (62) 

Following the same procedure, the fourth term in equation 
(58) is found to have no unbounded terms. 

Adding equations (60) and (62), and using equations (53) 
and (54), [U}(x) + U2(x)] is found to be a bounded function 
from which it follows that the sum total of the unbounded 
terms cancels out. This then proves that the assumption of a 
bounded slope function, G(t), is correct. 

Similar behavior of the slope function was reported by Back-
ioglu and Erdogan (1977) for the problem of a semi-infinite 
strip of finite width "2h" under a self-equilibrating pressure 
on the end 0 = 0) and stress-free longitudinal edges (x = 
±h). 

The axial stress in the half-plane has a logarithmic singularity 
at x = h, y = ±c. This is the well-known logarithmic sin
gularity (Timoshenko and Goodier, 1970; Bogy, 1970) due to 
the finite discontinuity in the shear load on a half-plane and 
is given by 

A 

lim ajy(x,c) = K lim \og{x-h) + Order (1), (63) 

A 

where K is the modified stress intensity factor and is defined 
by 

K=-a)v (h,c + ) = -Ks [v2(,h,c) - Vi(h,c)] 

4/*! <£3(c-). (64) 
T(KI+ 1) 

The axial stress a2
yy (h

 + ,0) in the half-plane is bounded, as 
the shear load is continuous and zero at x = h, y = 0. 

The axial stress in the layer is logarithmically singular at the 
interface crack tip (x = ±h, y = ±c), and is given at x = 
h, y = c by 

lim (x,c) K lim log SJi-x) + Order (1). (65) 

Note that for a split length approaching zero, the modified 
A 

SIF, K, is exactly half the value of the modified SIF, K given 
by equation (46) for the case of the broken layer (a = K). This 
is because the discontinuity in the shear load on the half-plane 
reduces by one-half for an infinitesimal split length. 

The solutions to the above developed integral equations and 
the results are presented and discussed in Part II of this paper 
to follow. 
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Effects of Interleaves on Fracture 
of Laminated Composites: 
Part ll—Solution and Results 
The numerical solution of the integral equations derived in Part I of this work is 
developed and the critical stresses and displacements are calculated. These results in
dicate that interleaves increase the interfacial damage tolerance and significantly 
relieve the stresses in the undamaged plies. Interface (H-shaped) cracks have a 
stable growth with the mode I opening stress becoming compressive after a small 
longitudinal growth. Additional interface crack extension is due to shear stresses 
(mode II) only. In order to recommend an interleaf thickness-to-layer width ratio, 
the influence of relative material properties, structural weight, and stress reduction 
is studied. 

1 Introduction 

In Part I of this study, integral equations were developed 
which represent the influence of interleaves on damage growth 
in laminated composites. The composite was approximated by 
linearly elastic, isotropic media made of half-planes separated 
from a finite width layer by thin interleaves (Part I, Fig. 1). 
Three cases, depending on the extent of damage, were studied. 
In the first case the center layer was assumed to have a sym
metric central crack along the x-axis, in the second case the 
crack touching the interface was analyzed, and lastly, damage 
extending in the form of symmetric delaminations along the 
interface (H-shaped crack) was examined. Using the Fourier 
transform expressions for displacement and stresses, and ap
plying inverse Fourier transform techniques, solutions were 
developed for the three cases of damage. 

In this part of the study, numerical solution techniques 
based on Gaussian integration techniques (Kaya and Erdogan, 
1987; Erdogan, Gupta and Cook, 1972) and Hadamard's 
(1923) concept of differentiation of Cauchy integrals are 
developed. Critical stresses and displacements are calculated 
to investigate the influence of relative elastic properties and 
geometry of the interleafed composite on interface debonding, 
extent and suppression of delamination, and stress relieving in 
the undamaged plies. The results provide useful information 
that can assist the designer in the selection of suitable material 
and geometrical parameters of the interleaf for a particular 
baseline laminate. 

Certain commercial materials and their manufacturers have 
been mentioned in this paper for a practical discussion of 
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results. The use of these materials in this paper is not an of
ficial endorsement of these materials or manufacturers, either 
expressed or implied, by the authors or their university affilia
tions and sponsors. 

References made to equations developed in Part I of this 
study will be prefixed by I. For example, equation (I7a) refers 
to equation (7a) of Part I. The numerical solutions for each of 
the three cases are given first, followed by a discussion of the 
results in Section 3. 

o.o 
0.0 O.I 1.0 10.0 100.0 1000.0 

NORMALIZED INTERLEAF THICKNESS , t/h 

Fig. 1 Stress intensity factor as a function of interleaf thickness for 
constant crack length (MC I) 
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2 Solution Techniques 

2.1 Crack Within the Layer. Normalizing the variables 
of equation (116) and (118), with respect to the half crack 
length "a", 

s = , /• = — , G(t)=G(as)=^(s), 
a a 

p(x) =p(ar)=S(r),H(t) =H(as) = f(s), (1) 

equation (118) may then be written as 

J - i aVT 
Ms) 1 

- + aKn[as, ar] Ids 
s — r 

T S ( r ) ( l + / t ! ) 

V i 
, I/-I<1. (2) 

The integral equation (2) is approximated by using Gauss-
Chebyshev integration formulae and techniques (Erdogan, 
Gupta, and Cook, 1972) to give 

-TjYitiSi) 
l y 1 = 1 

where 

1 

a(Si-rj) 

»S(r,-) (l+*c,) 

4/*i 

(2 / -1 )TT 

+ Ku(asit arj) 

, ( / = l , 2 , . N - D , 

AO, L 2N J 

os[^],(/'=1.2 N-l). 

(3) 

(4) 

(5) 

The single valuedness condition (119) can be approximated 
as 

5><s,)=0. (6) 

Equations (3) and (6) represent a NxN system of 
simultaneous linear equations which gives numerical values 
for \p(s) at the discrete points, sit given by equation (4). 

The normal (cleavage) stress, ayAa+ ,Q) at the crack tip, has 
a square root singularity (Kaw, Appendix C, 1987). A stress 
intensity factor, Ku is defined as 

Kx= lirn+V2(x-fi)<7' (x,0). (7) 
x— a 

Equation (7) can be rewritten (Kaw, Appendix C, 1987) in 
nondimensional terms as 

K,= — 
4/M MX) 

(8) 
(l + /ci) <Ja ' 

2.2 Crack Up to the Interface. The numerical techniques 
enumerated in (Erdogan, Gupta, and Cook, 1972) to solve 
singular integral equations with Cauchy kernels are based on 
the exact Cauchy principal-value integral expression 
(Abramowitz and Stegun, 1964) of orthogonal Jacobi 
polynomials, P,\a'^(t), given by 

J: (l-tyo+tfp^u) 
t-x 

dt 

= ircot(air)(l -x)a (1 +x)aP„ (a'") (x) -

' / ! + ! ; -n-a-P; 1 -a ; -XF « + l ; 

2a+isT(a)T(n + P+l) 

r (« + a + )3+l) 

X[a> - l , / 3 > - 1 , a^0 ,1 ,2 , . . . ], U I < 1 , (9) 

where T(a) is the Gamma function and F(a; 13; y; z) is a 
hypergeometric series. This relationship forms the basis for 
solving singular integral equations with a simple Cauchy 
kernel, where the unknown slope function has a power 
singularity of the order of (a) and (15) at the end points. But 
in the present case the slope function has a logarithmic 
singularity at the end points, and a similar numerical tech
nique could not be found in the literature. Hence, solving 
equation (114) directly for the unknown displacement func
tion, v(x), is suggested. 

Normalizing the following variables with respect to the half-
layer width "h", 

s = - h ' 

X V(t) 

K^r.s) =h2Kn(t,x), S(r) =p(x), (10) 

equation (114) can be rewritten in the nondimensional form as 

V(s) 

-i (s-r)2 i: ds+\ h2V(s)Kn(hs,hr)ds 

x S ( r ) ( l + n i ) 
4/x, 

\r\<\. (11) 

Equation (11) has 1/ (s - r)2 type integrand and are called to 
be a strong singularity. Such integrands are classically 
nonintegrable and cannot be defined even in the principal 
value sense. A concept used by Hadamard (1923) interprets 
improper integrals with such singularities in the finite part 
sense. Kaya and Erdogan (1987) used this concept to solve 
elastodynamic problems such as the problem of an edge crack 
perpendicular to the free boundary of an elastic half-plane. 

Using the Cauchy principal value integrals (Tricomi, 1957) 
gives, for use later, 

" P„(t) £ -dt=-2Q„(x), \x\<\, (12) 
-i t-x 

where P„ (t) and Q„ (t) are Legendre polynomials of the first 
and second kind, respectively. 

Hadamard's concept uses direct differentiation on Cauchy 
integrals to obtain finite part integrals. For example, this pro
cedure gives 

At) 
dxJ-i t—x 

•dt--
f(t) 

-dt. (13) 
-i (t-x)2 

Using equation (13) direct differentiation in equation (12), it 
follows that 

i P„V) 
(t-x)2 -dt = 

2(n +1) 

T l -x2) 
lxQ„(x)-Q„ + l(x)], \x\<l. 

(14) 

Now, assuming in equation (11) that the displacement func
tion can be represented as 

V(s)^ J}A„PHW, (15) 

equation (11) can then be written as 

E^-T7^e,,(o-e„+, 
n=0 L 1 r 

+ L i h2p»(s)K" (hsM)ds\ = -

(/•)! 

*S( r ) ( l + K,) 

4/i i 
, H < 1 . 

(16) 

A collocation method is used to solve for the unknown coef
ficients, A„. The choice of collocation points, symmetrically 
distributed on the interval ( - 1 , 1), is not restricted, but more 
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points concentrated near the end points improves the rate of 
convergence (Baker, 1977). The roots of the Legendre 
polynomials are a suitable choice, and this gives 

»—n L 

-2(«+l ) 
t _ r ? [r,Qn(r,)-Qn + x(r,)). 

+ \ih
2Pn(s)Ku(hs,hn)ds\ = 

TS(r,)(l + K,) 

4/*, 

(' = 0,1^2 ,N-l,N), (17) 

where r-, is the ith zero of the Legendre polynomial PN+} (x), 
and 

1 dN 
PN(X)=-J7——1T{X2-\\N. (18) 

2N7V! dxN 

Equation (17) represents a [(N+ l)X(JVx 1)] system of 
linear equations which can be used to evaluate the coefficients, 
An-

The modified stress intensity factor, K defined by equation 
(146), is expressed numerically as 

e2(s)=^B,Tl(w), (24b) 

63(s)~C0+ £ C„Tm(w), (24c) 

where Pk(s) and T,(w) are Legendre and Chebyshev 
polynomials of the first kind, respectively. The normalized 
crack-opening displacement function 6X (s) is approximated 
by a series of Legendre polynomials because of the availability 
of a direct relationship (14) for integrands with strong 
singularities. The other normalized displacement functions, 
d2(w) and 03 (w), are approximated by a series of Chebyshev 
polynomials. It has been shown (Fox and Parker, 1968) that a 
series of Chebyshev polynomials converges more rapidly than 
any other series of Gegenbauer polynomials, and converges 
much more rapidly than power series. 

Using Hadamard's concept expressed mathematically by 
equation (14) for Legendre polynomials, the series approxima
tions (24) for the unknown functions 6, (s), (/'= 1,2,3), and the 
even and odd symmetry of 62(w) and 8}{w), respectively, 
equations (21)—(23) can be rewritten as 

* - ^ * E ^ . (19) 
K M 

2.3 H-Shaped Crack. Normalizing the dimension of 
equations (I55)-(I57), with respect to the half-layer width 
"h'\ and half split length " c " , 

%AkZn(k,r) + 2> ,Z 1 2 ( / , r ) + £ CmZl3(m,r) 
k = 0 / = 0 m = 0 

V i 
-, H<1, (25) 

K 

t x z y 
s = — , /• = — , w = , q = 

n h c c 

v(t)=81(s)h, 4>2(z)=e2(w)c, (Mz)=0 3 (w)c , p(x)=S(r), 

(20) 

the following integral equations are obtained in the nondimen-
sional form: 

k = 0 

-1 (S-
—-2-*+ h2Ku(hr,hs)6l(s)ds 
" T ) J — 1 

^AkZ2l(k,q)+^B,Z22(l,q) 
1 = 0 

M 

+ X) CmZ23(m,q) = 0, \g\<l, 
m = 0 

L 

%AkZn(k,q)+ Y,B,Zn(l,q) 
1 = 0 

M 

+ E C„,Z33(m,q) = 0, lq\<\, 

(26) 

k = 0 

(27) 

+ c2Kn(hr,cw)62(w)dw 

TrS(r)(l + Kl) 
, \r\<l, (21) + c2Kn(hr,cw)63(w)dw=-

f h2K2\(cq,hs)6i(s)ds 

f ' 7TC 
+ \ c2K22(cq,cw)d2(w)dw-—-62(q) 

JO 2, 

+ \ c2K23(cq,cw)6i(w)dw = 0, 0<q<l, (22) 

j _ h2K3l(cq,hs)ei(s)ds+\ c2K23(cq,cw)d2(w)dw 

+ c2Ki3(cq,cw)di(w)dw——63(q)=0, 0<q<l. (23) 
JO 2 

To determine the numerical solution to the three integral 
equations (21)-(23), the following forms for the unknown 
functions are assumed 

K 

el(s)~'£AkPk(s), (24a> 

where Zy, ((=1,2,3, j= 1,2,3) are given in terms of finite in
tegrals of Kjj (Kaw, Appendix B, 1977). 

Note that since the displacement function 83 (w) is an odd 
function of " w " and is nonzero at w = 0, the first term of the 
series approximation of the function d} (ve) is assumed to be 
of the form 

where 

k = 0 

C0 = C0sign(w), 

sign(vv) = + l , i f v e > 0 , 

= - 1 , if w<0. 

The collocation method is again used to solve for the 
unknowns Ak, B„ and Cm. The choice of collocation points is 
distributed symmetrically on the interval ( - 1,1) for equations 
(25)-(27). More points are concentrated near the end points to 
improve the rate of convergence (Baker, 1977). The roots of 
the Legendre polynomials satisfy such a selection of colloca
tion points. 

Equation (25)-(27) hence represents a [(K + L + M + 3) X 
(K + L + M + 3)] system of linear equations which can be 
simultaneously solved for the unknown coefficients Ak, Bh 

Cm. The unknown functions 0,, (/= 1,2,3), can hence be 
calculated by using equations (24). 

The modified stress intensity factor given by equation (164) 
can be numerically expressed as 
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A 4MlC X 
K= / ' £ CM. (28) 

3 Results and Discussion 

The results presented here are for the case of plane strain 
with a constant pressure, /?,, on the crack surface and no loads 
at infinity. This is the solution denoted by Sn in Part I. The 
complete solution Stota, can be obtained simply by adding the 
uniform strain solution, S,, which is given by constant stresses 
and no damage as 

o\y =Pl, c2
yy =Pl \\~V^2 • (29a,b) 

Five material combinations, given in Table 1 are used in the 
results and are abbreviated as MC I, MC II, MC HI, MC IV, 
and MC V. 

The Young's moduli, Ex and E2 in the material combina
tion, MC I, are the stiffness properties in the 90 deg and 0 deg 
directions of a unidirectional T300/5208 Graphite/Epoxy1 

laminate. MC I is the most significant material combination, 
because a transverse notch is more likely to develop first in a 
90 deg ply. This behavior was observed by Masters (1985) in 
his experimental study of impact loading of laminates. Most 
of the sample results shall hence be discussed for this material 
combination. The interleaf properties2 in Table 1 were com
municated by Masters as used in his experimental study 
(Masters, 1985). 

3.1 Crack Within the Layer. In this problem, a sym
metric transverse crack of length "2a" (a/h<l)3 is situated in 
the layer and is opened by a uniform pressure, px. The crack-
tip axial stress has a square-root-type singularity and the coef
ficient of this singularity is defined as the mode I stress intensi
ty factor (SIF), #, given by equation (120). When the SIF 
reaches a critical value K,=KIC, it is assumed that the crack 
will propagate. This critical value is called the fracture 
toughness and is taken to be constant for a particular material. 
It should be pointed out that the SIF depends on the crack 
length and the applied load. This criterion can be directly used 
only for brittle materials and needs modification for ductile 
materials, where yielding may exist. The simplicity of the 
criterion, however, makes it a single parameter to predict 
crack growth and fracture, and is useful even for cracks where 
yielding is in the form of small plastic zones. 

Before presenting the detailed results, the adequacy of 
modeling the interleaves as distributed shear and tension 
springs will be discussed. Gecit and Erdogan (1978) solved the 
problem of embedded cracks in periodic buffer strips 
separated by adhesive layers and modeled, the latter, both as 
springs and as a continuum. They found small differences in 
the results obtained for the two models if the interleaf moduli 
and thickness were smaller than those of the strips. For exam
ple, for a material combination close in properties to MC III 
and MC IV, and a/h = 0.9 and (t/h <0.2)4, a difference of less 
than 3 percent was found in the SIFs. Results from the present 
study for the normalized SIF, K^ip^a), are plotted as a func
tion of interleaf thickness in Fig. 1 for MC I. The values of the 
normalized SIF corresponding to the special cases of an in
terleaf thickness of zero, as well as that of the thickness ap
proaching infinity, are found to be in excellent agreement with 

T30O/5208 Graphite/Epoxy composite laminate is made of T300-graphite 
fibers (manufactured by Union Carbide) in Rigidite 5208-epoxy resin (registered 
trademark of Narmco Materials). 

Private communication of the second author with Dr. John E. Masters, 
Chemical Research Division, American Cyanamid Company, Stamford, Conn. 
06904. 

3a/A = Crack length to layer width ratio. 
//h = Interleaf thickness to half-layer width ratio. 

Table 1 Material combinations used 

Material 
Combinations 

MC I 

MC II 

MC III 

MC IV 

MC V 

Layer 

(GPA1 

10.35 

31.05 

10.35 

182.90 

182.90 

Vl 

.28 

.28 

.28 

.28 

.28 

Half-Plane 

E2 
(GPA1 

182.90 

10.35 

10.35 

182.90 

10.35 

V2 

.28 

.28 

.28 

.28 

.28 

Interleaf 

E3 
(GPA) 

3.45 

3.45 

3.45 

3.45 

3.45 

V3 

.35 

.35 

.35 

.35 

.35 

those special cases found in the literature. For the interleaf 
thickness approaching infinity, which is equivalent to an in
terleaf moduli of zero, or therefore corresponding to stress-
free longitudinal sides of the layer, the normalized SIFs reach 
asymptotic values identical to those obtained by Sneddon and 
Srivastav (1971). They solved the problem of a transverse 
crack in a finite width strip with unloaded longitudinal edges. 
The normalized SIF, for the other special case of an interleaf 
thickness of being exactly equal to zero, and found to be iden
tical to those obtained by Hilton and Sih (1971) and Bogy 
(1973). They solved the problem of a layer, with an internal 
crack normal to the interface, bonded between two half-
planes. These limit cases and the results of Gecit and Erdogan 
(1978) for thin interleaves give considerable assurance as to the 
usefulness of the results in predicting the behavior of the in
terleaf ed composite laminates with an embedded crack. 

Additional significant results may be obtained from Fig. 1, 
where it is seen that the normalized SIF increases with an in
crease in the interleaf thickness. This behavior is true for all 
material combinations. It does not, however, imply that the 
global strength of the laminate is necessarily decreased by in-
terleafing laminates. For example, if the initial damage is in a 
90 deg ply, the presence of the interleaf may result in a com
plete failure of the ply at a lower load. The subsequent 
behavior of the laminate when this ply is fully broken, and the 
influence of the interleaf on delamination, additional ply 
failure, and ultimate laminate strength may, however, be 
higher than with no interleaf. This behavior is considered in 
the next two sections. 

Further, from Fig. 1, the SIF (numerator of the normalized 
SIF) is found to decrease as the crack length is increased for 
small interleaf thicknesses. Since the SIF is directly related to 
the load-carrying capacity of a material, a decreasing SIF im
plies a higher load required to continue the crack. The crack 
growth is hence considered to be stable. For example, for 
a/h = 0.9 and t/h <0.08, the crack growth is stable. This 
behavior of a stable crack for small interleaf thicknesses holds 
only for MC I, that is, for the case of the crack in a layer 
which is less stiff than the half-plane. 

The maximum cleavage stress, ayy(h,0)/plt in the half-
plane occurs in line with the crack tip at the interface and is 
plotted in Fig. 2 as a function of interleaf thickness for MC I. 
For small crack lengths («//?< 0.8), this stress is an increasing 
function is the range of small interleaf thicknesses (or large in
terleaf moduli), but is relieved on further increase in the 
thickness. This behavior is not found for large crack lengths. 
For example, for a/h = 0.9, the stress decreases monotonically 
with an increase in the interleaf thickness. Interestingly, for 
material combination MC V, where the crack is in a stiffer 
material, the increase in the cleaveage stress in the range of 
small interleaf thicknesses is much more substantial for all 
crack lengths. In such cases the introduction of a thin interleaf 
can, in fact, cause higher cleavage stresses and perhaps assist 
in continuing the crack across the interface. 
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3.0r 

0.0 
0.0 0.05 0.10 0.15 0.20 

NORMALIZED INTERLEAF THICKNESS , t / h 

Fig. 2 Maximum cleavage stress in the half-plane as a function of in
terleaf thickness for constant crack length (MC I) 

a o.5o 

0.00 0.05 
NORMALIZED 

0.10 0.15 0.20 
INTERLEAF THICKNESS , t /h 

Fig. 3 Maximum interleaf transverse stress as a function of interleaf 
thickness for constant crack length (MC I) 

The maximum interleaf transverse stress is maximum and 
tensile at y = 0, and decreases as the interleaf thickness is in
creased and is plotted in Fig. 3 for MC I. This behavior is 
found to be typical and is exhibited for all material combina
tions. The maximum interleaf shear stress, like the maximum 
interleaf transverse stress, is a decreasing function of interleaf 
thickness and is plotted in Fig. 4 for MC I. 

3.2 Crack Up to the Interface. The only difference be
tween this and the previous case is that the symmetric crack 
now extends up to the interface and represents a broken layer. 
Due to the interleaf being modeled as a spring, the axial stress 
in the half-plane for this case has a logarithmic singularity at 
the crack tip. A modified SIF, Kis defined by the coefficient 
of this singularity and is given by equation (146). 

0.40 

0.30 

0.20 

0.10 

\ 

\ \ . 

\ . î ^^^ 

"v̂ ^̂  
î ^̂ __ 

i 1 1 1 

0.00 0.05 0.10 0.15 0.20 

NORMALIZED INTERLEAF THICKNESS, 1/h 

Maximum interleaf shear stress as a function of interleaf Fig. 4 
thickness for constant crack length (MC I) 

0.00 0.40 0.10 0.20 0.30 
NORMALIZED INTERLEAF THICKNESS, t/h 

Fig. 5 Modified stress intensity factor as a function of interleaf 
thickness for different material combinations 

Figure 5 shows that this modified stress intensity factor K 
decreases as a function of increasing interleaf thickness. This 
decrease is rapid up to t/h = 0.3. The modified SIF, K, unlike 
the SIF, Klt for the crack within the layer does not directly 
give a measure of the load-carrying capacity from the linear 
elastic fracture mechanics point of view. It may be recalled 
that modeling the adhesive as a spring resulted in a 
logarithmically-singular axial stress in the half-plane at the 
crack tip. A continuum model would give a power singularity 
but also not of a square root type (Gecit and Erdogan, 1978). 
One of the methods to determine the strength of the composite 
in such cases is to use failure criteria based on average stresses 
or point stresses and compare them with the ultimate strength 
of the undamaged material. A measure of the axial stresses at 
a specific point x=1.01h in the half-plane, as well as the 
average axial stresses calculated over the interval x= h to 1.01ft 
in the half-plane, showed the same behavior of a rapid 
decrease as the interleaf thickness is increased to t/h = 0.3. 
From the above observations, and noting that the interleaves 
have an insignificant load-carrying capacity but do add to the 
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Table 2 Length of delamination until closure of crack for different 
material combinations 

Material 
Combination 

MC I 

MC II 

MC III 

MC IV 

Split Length Until Closure of Crack, 
c/h 

t/h = 0.1 

0.3S 

0.018 

0.205 

t/h = 0.2 

0.21 

0.004 

0.13 

< 0.002 

Results from [121 

0.260 

0.096 

0.164 

0.164 

weight of the structure, an interleaf thickess of approximately 
15 percent of the layer thickness seems suitable. It may be 
mentioned that graphite, epoxy, and the interleaf material 
have densities of the same order (1400 kgms/m3). 

3.3 H-Shaped Crack. In this case, a symmetric 
transverse crack extending up to the interface and symmetric 
delamination along the interface is considered, as shown, in 
Fig. 1 (Part I). The axial stresses in the half-plane and the layer 
are, for this case, logarithmically singular at the interface 
crack tips and are given by equations (163) and (165), respec
tively. Since the interleaf is modeled as springs, the transverse 
and shear stresses are finite in the interleaf even at the crack 
tip. 

Figure 6 gives the transverse and shear stresses at the inter
face crack tip, (x = h, y = c) as a function of split length for 
MC I. The transverse stress is tensile for no split and decreases 
rapidly as the splitting is initiated and grows. This peel 
(transverse) stress becomes compressive and therefore closes 
the split for relatively small split lengths. On the other hand, 
the interleaf shear stress at the interface crack tip shows a very 
slow continued increase with split length growth. These results 
indicate that the split tip closes early and that most of the in
terface crack growth is due to shear alone. It is also found that 
the split length at which the crack closes decreases as the in
terleaf thickness is increased. The same behavior is exhibited 
for all material combinations. However, the order of the split 
length for the split to close varies considerably for each 
material combination and is illustrated in Table 2. The results 
are also compared with those obtained by the authors using 
the formulation and computer code developed by Goree and 
Venezia (1977) for the case of the two bonded half-planes with 
a transverse crack and delamination (T-shaped crack) along 
the interface. A further discussion on this behavior for 
longitudinal splitting is presented by Wolla and Goree (1987). 

The above results indicate that for a crack (that is, a broken 
ply adjacent to the interleaf) in the strong plies (MC II, MC 
IV), delamination (or, at least positive peel stresses) is sup
pressed very early after initiation. For a crack in the weak plies 
(MC I, MC III), the extent of delamination is significant and 
suggests the need for the interleaves as well as that the bond-
to-ply interfaces be of high tensile and shear strength. Also, 
from Fig. 13 for zero split length, the interleaf transverse and 
shear stresses at the interface crack tip are seen to decrease 
with an increase in the interleaf thickness. This implies that a 
thicker interleaf will increase the external load required to in
itiate delamination. The same behavior is exhibited for all 
material combinations. 

3.4 Comparison With Experimental Studies. Although 
results from a detailed experimental investigation are not 
available for direct comparison with the analytical predic
tions, the preliminary experimental studies done by Masters 
(1985) and Sun (1985) are helpful in comparing the behavior 
of composite laminates with interleaves. These results support 
the analytically predicted behavior. Sun (1985) used a baseline 

NORMALI2E0 SPLIT LENGTH , c/h 

Fig. 6 Transverse and shear stresses at the interface crack tip as a 
function of split length for constant interleaf thickness (MC I) 

laminate specimen AS4/3501-6 Graphite/Epoxy (05/905/05) 
and placed 5 mil adhesive film (FM1000 by American 
Cyanamid) between the 0 deg and 90 deg plies. The impact 
velocity required to initate delamination in the adhesive 
layered (interleaf) laminate was twice as large as that required 
for the baseline laminate. Similar results were reported by 
Masters (1985) for the AS4/1808 Graphite/Epoxy laminate 
[(±45/0/90/0/90)2/± 45/0/90/±45/]s. Figure 14 in Masters 
(1985), shows the photomicrographs of the transverse cracks 
developed in the 90 deg plies of a baseline and an interleafed 
laminate. For the same impact loads, the interleafed laminate 
showed no delamination, and damage was limited to 
transverse cracks. Delaminations occurred only for higher 
loads but were smaller than the ones developed for baseline 
laminates at comparable energy levels. 

4 Conclusions 

An analytical study is carried out to assist in the under
standing of the influence of interleaves on the damage 
tolerance of multilayered composite laminates. The geometry 
of the problem is idealized as a damaged layer bonded to two 
half-planes and separated by thin interleaves. The interleaves 
are modeled as distributed tension and shear springs. The 
damage in the layer is a symmetric transverse crack, which 
may extend up to the interface. Delamination along the inter
face is also analyzed. Material combinations assumed to ap
proximate Graphite/Epoxy laminates interlayered with thin 
thermoplastic film are used to discuss the results. The follow
ing conclusions are drawn from the study. 

A. For the case of a crack within the layer: 
(1) The stresses at the crack tip are singular and have, 

as expected, the classical square root singularity. 
(2) The introduction of the low modulus interleaves in

creases the potential for the crack to extend while it 
is within the layer but reduces the stresses at the in
terface, which improves delamination damage 
tolerance. 

(3) If the crack is in a layer which is stiffer than the 
half-planes, the use of interleaves results in higher 
cleavage stresses in the half-plane and may assist in 
continuing the crack across the interface. 
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B. For the case of a crack up to the interface: 
(4) By modeling the interleaves as distributed tension 

and shear springs, the axial stress in the half-planes 
is logarithmically singular at the crack tip. 

(5) The stresses in the interleaves and the half-planes 
reduce with an increase in the interleaf thickness. 
The rate of this reduction is most rapid for small in
terleaf thicknesses. For example, for the material 
combinations of interleafed Graphite/Epoxy used 
in the results, the optimum thickness is of the order 
of 15 percent of the layer thickness. Any further in
crease in the thickness of the interleaf is an un
profitable addition to structural weight. 

C. For the case of an H-shaped crack: 
(6) The axial stresses in the layer and the half-planes at 

the interface crack tip are logarithmically singular, 
whereas the axial stresses in the half-planes at the 
intersecting points of the interface cracks and the 
transverse crack are bounded. 

(7) The growth of delamination along the interface is 
stable. The split tip closes as the transverse stresses 
become compressive for small split lengths and fur
ther growth is due to shear alone. 

(8) The split length until the split tip closes decreases 
with an increase in the interleaf thickness (or 
decrease in interleaf moduli). 

Based on the above conclusions, an interleaf thickness of 
the order of 15 percent of the layer width is recommended for 
typical Graphite/Epoxy laminates. Since transverse cracks are 
more likely to occur in weak plies, the weak-stiff ply interfaces 
are prone to high stresses, which makes interleafing such inter
faces a first choice. Similarly, the weak-weak ply interfaces are 
also prone to higher stresses, but the possibility of a crossover 
of the transverse crack is also high. This makes interleafing 
such interfaces a secondary choice. 
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Three-Dimensional Solutions for 
Antisymmetrically Laminated 
Anisotropic Plates 
Analytic three-dimensional elasticity solutions are presented for the stress and free 
vibration problems of multilayered anisotropic plates. The plates are assumed to 
have rectangular geometry and antisymmetric lamination with respect to the middle 
plane. A mixed formulation is used with the fundamental unknowns consisting of 
the six stress components and the three displacement components of the plate. Each 
of the plate variables is decomposed into symmetric and antisymmetric components 
in the thickness direction, and is expressed in terms of a double Fourier series in the 
Cartesian surface coordinates. Extensive numerical results are presented showing 
the effects of variation in the lamination and geometric parameters of composite 
plates on the importance of the transverse stress and strain components. 

1 Introduction 
Although a complete three-dimensional elasticity solution 

for simply-supported homogeneous isotropic plates was 
presented by Vlasov (1957), recent development of fibrous 
composites has stimulated interest in the use of the three-
dimensional theory of elasticity for obtaining highly accurate 
predictions of the response characteristics of plates. Srinivas et 
al. (1969, 1970a, 1970b, 1973), Jones (1970), Lee (1967), 
Pagano (1969, 1970), and Pagano and Hatfield (1972) 
presented analytic solutions to the free vibration, bending, 
and stability problems of laminated plates. Lee and Reismann 
(1969) studied the dynamic response of rectangular plates. 
However, all the cited solutions are limited to either the cylin
drical bending case, or the case of simply-supported boundary 
conditions of orthotopic {or cross-ply) plates. 

This paper presents an analytic solution for the stress and 
free vibration problems of rectangular multilayered 
anisotropic plates. The plates consist of a number of perfectly-
bonded layers which have antisymmetric lamination with 
respect to the middle plane. The solutions are periodic in xl 
and x2. Extensive numerical results are presented for the effect 
of the different lamination and geometric parameters of the 
plate on the significance of the transverse stresses and strains. 

2 Mathematical Formulation 

Figure 1 shows the geometric characteristics of the plate as 
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follows: Ll and L2 are the side lengths in the x{ and x2 direc
tions, and h is the total thickness of the plate. The dimen-
sionless coordinates £(, £2>

 a nd fare introduced, where: 

*« = (a= 1,2 and a is not summed) 

f= : 

(1) 

(2) 

The analytical formulation is based on the linear three-
dimensional theory of anisotropic elasticity (see Lekhnitskii, 
1981 and Hearmon, 1961). The individual layers are assumed 
to be homogeneous, anisotropic, and are antisymmetrically 
laminated with respect to the middle plane of the plate. At 
each point a plane of elastic symmetry exists parallel to the 
middle plane. The sign convention for the different displace
ment and stress components is shown in Fig. 1. 

- Xo.^o 

X,,5 

i>33 
"32 

°23 

°22 

Fig. 1 Laminated anisotropic composite plates and sign convention 
for stresses and displacements 
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2.1 Displacement and Stress Expansions. For unsym-
metric response, each of the plate variables is decomposed into 
symmetric and antisymmetric components in the thickness 
direction, and is expanded in a double Fourier series in the 
Cartesian surface coordinates. The Fourier series are chosen 
such that the displacements and stresses are periodic in xx and 
x2 with periods 2L, and 2L2. 

The following expansions are used for the displacement and 
stress components: 

"1 

«2 

r O „ ^ 

»22 

ff33 

ff23 

On 

E E 
m=0 n=0 

^u> sinw7r£, cos «7rf, 

it-, cos wirf, sin n-wf, 

w sin /mr£, sin mrf, 

+ « 

Mi cos wn-f i sin m r ? , 

u2 sin miri, cos rtTrf, 

vv cos m7r£, cos nwt;2 

(3) 

= E E 
m = 0 n = 0 

r ffll 

cos W7rij, cos n-?r£2 

+ i a 2 2 

E E 
m = 0 n = 0 

sin W7r̂ ! sin mr£2 

a,, sin W7rJ, cos rt7r£-> 

al3 cos m-K^y sin «7r£2 

(4) 

'12 sin W7r£, sin flir£2 

ra2) 

+ < 

cos W7r£, sin /?7r£2 

sin OTTT^! cos «7r£2 

cos mir^ cos «TT£2 

(5) 

In equations (3), (4), and (5) the bar ( ) and tilde (" ) refer to 
symmetric and antisymmetric quantities, with respect to the 
middle plane. Each of these quantities is a function of the 
thickness coordinate, f. Note that the displacement and stress 
expansions, equations (3), (4) and (5), are periodic in x, and x2 

with periods 2L, and 2L2. The following displacement condi
tions are therefore satisfied on the middle plane (f = 0): 

A t * ! = 0 , Lx:ii\ 

fox-, 

= 0 

= 0. 

(6) 

(7) = 0, L2:u2 = w = 

The displacement conditions, equations (6) and (7), are 
satisfied when either m, n, or both, are zero. For m = n=0, 
only the w term in the displacement expansions, equations (3), 
survives. For m=\, n = 0; ux, u2, and vv survive, and for 
m = 0, « = 1, uu ii2 and w survive. 

The external surface loads are also periodic and are expand
ed in double Fourier series similar to the displacement com
ponents in their respective directions (see equations (3)). For 
free vibration problems the right-hand sides of equations (3), 
(4), and (5) should be multiplied by eiut where oi is the fre
quency of vibration of the plate and t is time. 

2.2 Governing Equations. A mixed formulation is used 
with the fundamental unknowns consisting of the symmetric 
and antisymmetric components of the displacements and 
stresses. The governing equations of the plate consist of the 
constitutive relations (strain-stress relations, with the strains 
expressed in terms of displacements), and the equations of 
motion. For the purpose of simplifying the form of the equa
tions, the material compliance matrix for each layer, [a], is 
decomposed into the sum of orthotropic and anisotropic 
(nonorthotropic) parts, [a0] and [«,] (see Appendix). 
Moreover, the stresses and displacements are each divided into 
two groups as follows: 

N o m e n c l a t u r e 

a\f{I,J= 1 6) = elastic compliances of the Ath layer of 
the plate 

[a] = matrix of compliance coefficients 
[a0]' [flJ = orthotropic and nonorthotropic parts 

of the matrix [a] 
EL, ET = elastic moduli in the direction of fibers 

and normal to it 
GLT, GTT = shear moduli in plane of fibers and 

normal to it 
{//,) and {H2} = vectors of stress unknowns 

h = total plate thickness 
Llt L2 = side lengths of the plate 

m,n = Fourier harmonics in the xx and x2 

directions, respectively 
NL = number of layers of laminated plate 

Pi(i= 1,...,3) = intensities of external surface loading 
in the coordinate directions 

[S0] = matrix of coefficients 
[S,j = matrix of linear first-order ordinary 

differential operators 
U = total strain energy 

[/,, U2, t/3 = strain energy components associated 
with (ffa/3, eaj3), (aa3, 2ea3) and (<r33, 
e33), respectively 

«,, u2, w = displacement components in the coor
dinate directions 

{Xx}, {X2\ = vectors of displacement unknowns 
xx, x2, x} = Cartesian coordinate system 

9 = fiber orientation angle 
£i> ?2> f = dimensionless coordinates in the xx, x2, 

and x3 directions, respectively 
p = mass density of the material of the 

plate 
ffu, a22> ff33 = normal stress components 
a23, ff,3, <712 = shear stress components 

Q = a)^/ph2/ET = dimensionless frequency 

co = circular frequency of vibration of the 
plate 

Bars and Tildes 

A bar (-) and a tilde (~) refer to the symmetric and antisym
metric components of the response quantities (or external 
loading) in the thickness direction, respectively 

Subscripts 

Superscript 

m,n refer to the (m,ri) Fourier harmonic 
L refers to direction of fibers 
T refers to the direction transverse to the 

fibers 

t denotes transposition 
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\H, l l m » _ < 

\H, 

" S n sin mirk, sin rm£-,~ 
llmn ^l ^ z 

a22 sin rmr^ sin nir^2 

cf33 sin «7r£, sin «7r£, 

<j21 s in W7r£, c o s «7r£, 

ffn cos mist | sin /Z7r£, 

<J12 COS W7T?) COS M7r£2 

a , i cos mirf, cos «7r£2 

ff„ COS /Mir^i COS «7r£2 

ff„ cos m-xt, cos mr£2 

a, , cos W7rf, sin «ir?2 

"mn s ' ^ 
cf,! sin W7rf i cos «7r£2 

CT,, sin /wirf, sin «7r£2 

(8) 

(*> 

Mi cos »?ir?i sin H7r£2" 

{Xi 

U-, sin W7r£i cos «ir£2 
*-mn 

^ w,„„ sin m-K^x sin nir^2 

H, sin W7rf i cos «TT£2 

«, cos WTT? 1 sin «TT£2 

Wm„ COS mir^ COS « 7 T £ 2 

(9) 

For each layer and each pair of harmonics, m and n, the 
governing equations can be partitioned into two coupled sets 
of equations associated with (//,)„,„, {X{}mn and {H2}mn, 
[X2}m„ as follows: 

-a0 S„ + Si 

S' + S\ 0 
— pa)2 

mn 

Cly 0" 

0 0 

"0 0" 

0 / 

^ 

^ 

[H2-\ 

1 x2 J m« 

.-^U mn 

= 0 (10) 

and 

-S'0+S\ 

S0+Sl 

0 
-pw 

0 0 

0 / 

H, 

X-

ax 0 

0 0 X\ J mn 

(11) 

where [/] is the identity matrix, [S0] is a matrix of coefficients, 
and [SJ is a matrix of linear first-order ordinary differential 
operators. The explicit forms of [a0], [a,], [S0], and [SJ are 
given in the Appendix. 

The complete description of the plate response re
quires: (a) the governing equations, equations (10) and (11) 
for each layer, (b) the stress equilibrium and displacement 
continuity conditions at layer interfaces, and (c) the conditions 
at the top and bottom surfaces of the plate. 

The equilibrium and continuity conditions at the interfaces 
between two typical layers K and K+\ can be written in the 
following compact form: 

4" 
«i° 
w(«) 

-ff,i,K+1» = 0 , 

- « ^ + 1 » = 0 , 

-w<"+1> = 0 

; = 1 to 3 

a = l , 2 

(12) 

(13) 

(14) and 

where superscripts K and K+\ refer to the layers K and K + 1 . 
Equations (13) and (14) imply perfect bonding between the 
different layers (i.e., no slip). The stress conditions at the top 
and bottom surfaces are: 

=ph ; = l t o 3 (15) 

where p-, are the intensities of the external surface loading in 
the coordinate directions. For free vibration problems, p, = 0. 
Note that equations (12) to (14) can be replaced by two sets of 
equations of the same form; one relating the symmetric com
ponents (quantities with a bar) and the other relating the an
tisymmetric components (quantities with a tilde). 

2.3 Computational Procedure. The stress and vibra
tional responses of the plate are obtained by using the pro
cedure described in Srinivas and Rao (1970a), Srinivas et al. 
(1970b), and Srinivas (1973). The procedure is based on solv
ing the characteristic equation associated with equations (10) 
and (11) for each layer, and each pair of Fourier harmonics 
(m,n); finding the twelve roots and twelve eigenvectors; then 
solving a set of simultaneous equations representing the condi
tions at the top and bottom surfaces, and at the interfaces be
tween the different layers; equations (12) to (15). 

2.4 Comments on the Fourier Expansions and the Govern
ing Equations. The following two comments concerning the 
Fourier expansions and governing equations are in order: 

1 The Fourier expansions for the stresses and dis
placements used herein were inspired by, and are consistent 
with, those presented by Bert and Chen (1978) and Bert and 
Birman (1987), in conjunction with a two-dimensional first-
order shear deformation theory. The symmetric and antisym
metric components of the in-plane displacements and in-plane 
stresses of the three-dimensional theory correspond to the in-
plane displacements, rotation components, extensional forces, 
and bending moments of the two-dimensional theory; 
respectively. 

2 The Fourier expansions for the stresses and displace
ments, equations (3), (4), and (5), provide an exact representa
tion for the stress and free vibrational responses of rectangular 
composite plates. Moreover, the governing equations uncou
ple in harmonics provided: (a) the lamination is angle-ply 
antisymmetric with respect to the middle plane, cross-ply sym
metric with respect to the middle plane, or a combination of 
the two (e.g., antisymmetric quasi-isotropic lamination), 
{b) the displacements and stresses are periodic in xx and x2, 
and (c) the external surface loading components are periodic 
in x, and x2, and can be expanded in Fourier series analogous 
to those used for the corresponding displacement components, 
equations (3). 

The first condition can be verified by examining the con
stitutive relations for a pair of layers, K+ and K~ , which are 
symmetrically situated with respect to the middle plane; and 
noting that for the stress and displacement expansions to be 
valid the following relations must be satisfied between the 
compliance coefficients of the two layers: 

4 K + ) : T!." ) (16) 

(17) 

(18) 

(19) 

where in equations (16) to (19) /, j= 1, 2 and 3. Equations (16) 
to (19) are satisfied for angle-ply antisymmetric laminates, 

«/+3, )/+3=«/+3, )/+3 

•aJSf 

) = - / 
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cross-ply symmetric laminates, and combinations of the two. 
In the case of cross-ply laminates, aj6 = ais=0, [0^ = 0; and 
the governing equations, equations (10) and (11), are 
uncoupled. 

3 The displacement and stress expansions satisfy the 
following inversion symmetry conditions (see Noor and 
Camin (1976), Noor et al. (1977)): 

" 2 

v . W 

°n 

^ 3 3 

on 

<*13 

( f i . *2 .n 

- M , 

W 

(20) 

( - € i , - € 2 . f) 

(€l ,«2.f) 

^22 

^33 

- ^ 2 3 

- ^ 1 3 

L ff12 J 

(21) 

< - € i , - € 2 . f ) . 

Numerical Studies 

Parametric studies were conducted using the foregoing pro
cedure to assess the effects of variation in the lamination and 
geometric parameters on the significance of transverse stresses 
in laminated plates. These studies can help in assessing the 
reliability of various two-dimensional theories used in pre
dicting the stress and vibrational responses of highly 
anisotropic plates. 

The composite plates considered in this study are square 
angle-ply and quasi-isotropic laminates with L , = L 2 = 1 m. 
The plates have antisymmetric laminations with respect to the 

middle plane. The solutions are periodic in *, and x2 with 
periods 2L, and 2L2. The material characteristics of the in
dividual layers were taken to be those typical of high-modulus 
fibrous composites, namely: 

GLT/ET = 0.5, GTT/ET = 0.35, uLr = 0.3, = 0.49 

where L refers to the direction of fibers and T refers to the 
transverse direction; and vLT is the major Poisson's ratio. 
Note that for transversely isotropic material, GTT/ET = 
0.3356, instead of the 0.35 used in the present study. The fiber 
orientation for the angle-ply and quasi-isotropic laminates was 
selected to be [ + 0/-8 . . . ] and [ + 4 5 / 0 / 9 0 / - 4 5 / . . . ], 
respectively (starting from the top layer in each case). For 
static stress analysis problems, the plates were subjected to 
normal loading on the top and bottom surfaces p3 = /?3 sin 
7r£, sin 7r£2. and for free vibration problems, only the fun
damental frequencies and the associated mode shapes and 
modal stresses are considered. Typical results are presented in 
Table 1 and in Figs. 2, 3, and 4. 

Four parameters were varied, namely, the fiber orientation 
angle of the individual layers, 6; the number of layers, NL; the 
degree of orthotropy of the individual layers, EL/ET; and the 
thickness ratio of the plate, h/Ll. The fiber orientation angle 
was varied between 0 and 45; NL was varied between 2 and 20; 
EL/ET was varied between 3 and 30; and h/Ll between 0.01 
and 0.3. The effect of variation of the thickness ratio, h/Lx, 
and the fiber orientation angle, 9, of angle-ply plates on the 
magnitude of the fundamental vibration frequencies is shown 
in Table 1. 

As a step towards assessing the importance of transverse 
stresses in composite plates, the total strain energy of the plate 
was decomposed into three components: U{ associated with 
oa& and ea/3; U2 associated with <ra3 and 2ea3; and U3 

associated with a3i and e33 (Ui = l/2\vo33e3idV), where ea/3, 
2ea3 and e33 are the extensional, transverse shear, and 

Energy 
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ratio 
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0.1 0.2 
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Fig. 2 Variation of strain energy components with geometric and 
lamination parameters of composite plates. Angle-ply and quasi-
isotropic (Q.l.) composite plates subjected to static loading p = p0 sin 
i f i sin ir{2! ° 1 I 1*2, and U3 are the strain energy components 
associated with (<ra/3, ea(,), (a3a, 2e3a), and (ff33, c33), respectively. 
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Angle-ply composite plates with EL/ET = 15, NL = 10,6 = 45 deg. Plots of 
U1> *11> S13> *33> ^13 a r e shaded. 
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Fig. 4 Effect of thickness ratio, h/L^, on the distribution of stresses, 
displacements, and transverse shear strain energy density in the 
thickness direction associated with the lowest vibration mode. Quasi-
isotropic composite plates with EL/ET = 15, NL = 16, 0 = [45/0/90/ 
-45/45/0/90/-45]y,s. Plots of u-|, »i-|, Sf3, a33, 0A3 are shaded. 

Table 1 Effect of thickness ratio, h/Ll and fiber orientation 
angle, 0, on the fundamental vibration frequencies, 
Q = u^ph2/ET, obtained by three-dimensional elasticity 
theory. Ten-layered angle-ply composite plates with 
EL/ET = 15, NL = 10. Solutions are periodic in x, and x2 (see 
equations (3) to (5)). 

h/Lx 

0.01 
0.10 
0.15 
0.20 
0.25 
0.30 

9=15 deg 

0.1328/10"2 

0.1162 
0.2304 
0.3588 
0.4934 
0.6307 

9 = 30 deg 

0.1510X10"2 

0.1296 
0.2532 
0.3889 
0.5286 
0.6692 

0 = 45 deg 

0.1595X10-2 

0.1351 
0.2617 
0.3993 
0.5400 
0.6810 

transverse normal strains, respectively. The effect of variation 
of the four parameters, 6, NL, EL/ET and h/Lx on the strain 
energy ratios U{/U, U2/U, and U3/U (where 17=17,+ 
U2 + C73) was studied. Typical results are presented in Fig. 2 

for static loading. Also, Figs. 3 and 4 show the effects of 
variation of the thickness ratio of the plate, h/Lu on the 
distribution of displacements, stresses, and transverse shear 
strain energy density, Un = l/2a13 x2e13, in the thickness 
direction, associated with the fundamental frequency, for 
angle-ply and quasi-isotropic plates, respectively. Both the 
symmetric and antisymmetric parts of the response quantities 
(with respect to the middle plane) are shown in Figs. 3 and 4. 
For clarity, the quantities associated with {X2} and \H2); 
namely, the symmetric w,, au, a33, and antisymmetric 513, are 
shaded in the figures. The quantity £713 = l/2<r13 x2e13 is also 
shaded. The antisymmetric w was approximately zero in all 
cases. 

Note that since the symmetric and antisymmetric com
ponents of each response quantity are multipled by different 
trigonometric functions in \x and £2 (

s e e equations (3) to (5)), 
the value of the response quantity is a linear combination of 
the two components. An examination of Figs. 2 through 4 
reveals: 
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1 As to be expected, the transverse shear strain energy 
ratio, U2/U, increases with the increase in the fiber orienta
tion angle (from 0 deg to 45 deg), the thickness ratio of the 
plate, the number of layers, and the degree of orthotropy of 
the individual layers. For plates with h/Ll =0.1, U2/U can ex
ceed 0.40. The increase in U2/U is associated with a decrease 
in the ratio of [/,/[/. 

2 A sharp increase in the ratio U2/U is observed as NL in
creases from 2 to 4. This is followed by a less pronounced in
crease in the range 4<7VL< 10, and no noticeable change oc
curs for NL>\0. 

3 The transverse normal strain energy ratio, U3/U, is con
siderably smaller than the transverse shear ratio U2/U. This is 
particularly true for the vibrational response. For statically 
loaded plates, U3/U approaches 3.5 percent for thick 
multilayered plates with h/Lx = 0.3 and NL> 10. 

4 For thin plates (h/Lx <0.1), the variation of the in-plane 
displacements ua in the thickness direction is nearly linear, w 
is nearly uniform, and oalJ is nearly piecewise linear. As h/Lx 
increases, the nonlinearity of the variations of ua and aa/i in 
the x3 direction becomes more pronounced. The nonlinearity 
is amplified by increasing the modular ratio, EL/ET. On the 
other hand, the thickness variation of the transverse displace
ment w, transverse normal stress cf33, and transverse shear 
stresses cf13 is insensitive to variations in h/L,. 

5 For the fundamental vibration modes the maximum 
values of the components of the response vectors {Hi} and 
[Xt} are higher than the corresponding values of \H2 j and 
\X2). This is particularly true for the displacements and the 
transverse shear stresses (see Figs. 3 and 4). 

Concluding Remarks 
Analytical three-dimensional elasticity solutions are 

presented for the stress and free vibration problems of 
multilayered anisotropic plates with perfectly-bonded layers. 
The plates are assumed to have rectangular geometry and an 
antisymmetric lamination with respect to the middle plane. 
Each of the plate stresses and displacements is decomposed in
to symmetric and antisymmetric components in the thickness 
direction, and is expressed in terms of a double Fourier series 
in the Cartesian surface coordinates. 

Extensive numerical results are presented showing the ef
fects of variation in the lamination and geometric parameters 
of composite plates on the importance of the transverse stress 
and strain components. The numerical studies show that the 
transverse shear stresses and strains increase with the increase 
in the fiber orientation angle, the thickness ratio of the plate, 
the number of layers, and the degree of orthotropy of the in
dividual layers. Moreover, the transverse shear stresses and 
strains have a much more pronounced effect on the response 
of multilayered plates than that of transverse normal stresses 
and strains. The latter are expected to become noticeable (of 
the order of 3.5 percent or more) only for deformations with 
very short wavelengths (thickness-to-wavelength ratio of the 
order of 0.3), and in the regions of highly localized loadings 
(or loadings with sharp variation). 
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A P P E N D I X 

Explicit Form of the Arrays in the Governing Equations 
The explicit form of the arrays [a0], [aj , [S0]m„, and [SJ in 

equations (10) and (11), associated with the pair of harmonics 
(tn,ri), are given in this appendix. 
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where au(l, J= 1 to 6) are the compliance coefficients of the 
material (see Hearmon, 1961; Lekhnitskii, 1981), and a dot (•) 
refers to a zero term. 
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Interactive Bending Behavior of 
Sandwich Beams 
A multi-degree-of-freedom nonlinear Rayleigh-Ritz formulation for a sandwich 
beam is developed and is used to demonstrate the possible sudden destabilizing 
effects associated with wrinkling on the compressive face. Through-core stretching 
and core shearing effects are included. Nonlinear load-deflection curves, for various 
loading conditions including point loads and uniformly distributed loads, are 
presented. 

1 Introduction 

Recent nonlinear buckling studies of compressively loaded 
sandwich sections, typically as shown in Fig. 1, have revealed 
the possibility of a sudden secondary destabiUzation in the 
early post-buckling regime of overall (Euler) buckling, as the 
face under maximum compression itself buckles in a manner 
akin to that of a strut on an elastic foundation. The process 
may involve considerable shearing in the core, as well as 
interaction between the faces through the core thickness. 
Allowing analytically for these complications, a six degree-of-
freedom buckling model has been proposed (Hunt et al., 1988; 
da Silva and Hunt, 1989), which involves a complex nonlinear 
interaction between three active buckling modes. The 
bifurcational nature of the response means that numerical 
solution may be unreliable (Duxbury et al., 1989), but with 
local buckling typified by a single wavelength, the equilibrium 
paths can be found by direct solution. 

For the same sections loaded so that they bend rather than 
buckle, a similar destabiUzation of the compressive face can 
also occur. This time, however, in contrast to the bifurcation 
response, the reduction in stiffness develops smoothly out of 
the linear solution. The process is again amenable to the 
modal formulation, but crucial new features emerge; most 
importantly, the altered deflected form means that a large 
(strictly infinite) number of modes of differing wavelengths 
should be included. However, without the multiple 
equilibrium states associated with bifurcations, paths can 
successfully be traced using numerical procedures such as the 
Newton-Raphson algorithm. Examples, showing clear-cut 
destabilizations at moderately large lateral deflection, are 
presented; these are analyzed on an Apple Macintosh, and 
include a maximum of 126 degrees-of-freedom representing 31 
differing wavelengths. 

The present analysis allows for the important effects of 
through-core straining; thus, in the stressed state, the core 
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thickness varies along the length. The pattern that develops is 
for a localized thinning of the section, usually toward the 
ends, as dependent upon the particular loading detail and 
boundary conditions. This significant feature, of course, 
remains unexplored by formulations based on or around the 
assumptions of simple bending theory. 

2 Formulation 

Following a recent contribution on the interactive buckling 
of sandwich struts (Hunt et al., 1988), the deflection of a 
laterally loaded beam is described by two distinct sets of 
modal configurations, snake and hourglass, defined with 
reference to Fig. 2. The snake mode is made up to two 
independent components, shear (qs) and tilt (<?,), 

Core 

Flanges 

width 

Fig. 1 Sandwich panel 
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Fig. 2 The two modal contributions for a specific wave number 

L . (7TX 
w = qs——sin 

d = qtircos-iirx 
(1) 

where L is the length of the strut and / is the wave number 
(Hunt et al., 1988). The hourglass mode, shown at the bottom, 
can be seen as two back-to-back struts on elastic foundations, 
and allows through-thickness strains to develop. In analogy 
with the snake mode, it involves two components, a sinusoidal 
out-of-plane deflection (qh) and a longitudinal compressive 
wave (<?,), which bears the same relation to qh as tilt to shear in 
the snake mode. These are thus defined by 

--Qh~ 
2y L 

u = 
0 iirx 

— q , ircos 
2 x L 

(2) 

where b is the core thickness (distance between flanges), and 
we note that this implies a linear variation in shear strain angle 
through the core (Hunt et al., 1988). For simplicity, it is 
assumed that the flanges are thin (t<<b), as it is the case in 
most practical applications. To complete the modal 
description while allowing for a greater flexibility of the 
sandwich model, we include also the pure compressive mode, 
shown in Fig. 3. This comprises two degrees-of-freedom, 
simply defined as 

u=A5x 

w=A6y, (3) 

A 6 corresponding to the Poisson effect and being introduced 
to overcome the problem of a net change of core thickness in 
an hourglass mode with odd wave number. 

A 5 L f t 

w 

-*«| \m- -®\ \+-

- b A , 
2 6 

- b A , 
2 6 

Fig. 3 Total end and transverse shortening 

Unlike the buckling problem, where the feature of an 
optimum wave number for maximum interaction reduced the 
problem to six major degrees-of-freedom analysis (Hunt et al., 
1988), an accurate description of the bending problem requires 
a large number of interacting wave numbers. A new "double-
barreled" notation is thus introduced as follows: 

au = qs component of snake mode with wave number i 
an = Qh component of corresponding hourglass mode with 

wave number / 
a3, = q, component of snake mode with wave number i 
a4j = qt component of corresponding hourglass mode with 

wave number i 
A5 = total end shortening 
A6 = total transverse shortening 

where the wave number i takes any integer value from 1 to oo, 
Note that, with the introduction of the extra modal 
component qh subscripts no longer coincide with those of the 
earlier publication (Hunt et al., 1988). The displacements can 
now be written in general form as: 

Z[(au + a2if)-t-sm 
2y\ L ._ iirx 

17. 
M = - D l(y<iu+-Ya4i) 

b \ I-KX 

2 -,*cos-r 

+A6y 

+ A5x. (4) 

3 Potential Energy Function 

3.1 Strain Energy. Analysis proceeds by determining the 
potential energy function. The strain energy includes all the 
terms obtained in the buckling study, together with some new 
energy contributions, due to the extra degrees-of-freedom («4, 
and A6) and the inclusion of a range of odd wave numbers. 
Thus, using the same strain-displacement relations and strain 
energy expressions (Hunt et al., 1988), the strain energy of a 
sandwich beam is given as the sum of the contributions from 
the core and flanges (bending and membrane), 

(5) S.E.= ^ + K/m + Fc. 

Specifically, the flanges (bending and membrane) strain 
energy contributions, V^, and Vfm, respectively, are given by 

7 = ^ + ̂  = 
I 
2 

E^ 
12(1 -vj) 

i rL 

dx 

i r dx (6) 
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summed over both flanges, where the first term represents the 
contribution from the bending strain, already integrated over 
the thickness, t, of each flange, and {ex)„, represents the 
longitudinal membrane strain, which includes the linear 
strain-displacement contribution (du/dx) and the (averaged) 
release in compression caused by the curved as opposed to 
straight configuration of the flanges (Hunt, 1986). Being in a 
fully two-dimensional stress state (az = TXZ = Tyz = 0), the strain 
energy of the core, Vc, obtained from the general expression 
for the strain energy of a two-dimensional solid body ex
pressed in terms of strains, includes longitudinal (e*), 
transverse (e ,̂), and shear .(7) strain contributions. While the 
first is analogous to the flange membrane strains, the remain
ing two are directly obtained from the small-displacement 
strain-displacement relations (da Silva and Hunt, 1990). Thus, 
Vc is written 

V=- S
L p +b 

0 J~b 

3.3 Potential Function. The potential function is ob
tained as usual, 

V= total strain energy — work done by load. (11) 

Differentiation of the total potential energy function (11) with 
respect to As and A6 yields two equilibrium equations, linear 
in A5 and A6, which can be used to eliminate these (passive) 
degrees-of-freedom from further consideration, giving 

^=-^2£(^+(i--f^) 

A6 = - vc [As ——TT2 £ (a?; + — ^ ) 

2L A / l - ( - l ) ' \ k f 

(e2. + ej + 2vctxty) dxdy where t/< is defined as the ratio of effective core stiffness to 
total effective stiffness, 

n cL c +b/2 

+ -^M y2dxdy 
2 Jo i-bn ' 

(7) 
* = • 

Ecb 

2Eft + Ecb 
(13) 

where Ec, vc, and Gc are the elastic properties of the core and 
we define 

so that a reduced energy function is written as 

1 

£ , = • \-vl 
(8) 2 t 

3.2 Work Done by the Load. The work done by the load 
is quite different from that of the buckling problem, any 
generic lateral load doing work directly on the active coor
dinates au, a2!, and a3j, associated with lateral displacements 
and rotations, rather than the (passive) total end shortening 
As. We note that no work is done on «4/, this being a pure 
longitudinal deformation. Writing the total work done by the 
load(W.D.L.)as 

D ^1/1/fli/ + V^al + Vmial + Vmia
2

4i 
;=i L 

+ 2^1/3,-aw^s/ + 2^2M,a2/«4/ + D ( V2l2Javay + Vmja^aAj) 
j=i 
(My) 

00 00 

+ £ ma'3/«i/«2/«3;+ L via/3yfli/«2,-«v 
;=i L • • - • J 

+£[-

y'=i 

V\ ,1 nr>iQiitt->i + "TT" *2i2i2i2ia2i 

(W.D.L.)= Yi (W.D.L.)#,= -(P D (V^) 

. • \iiamu\i"2i • j . 

(9) 
;=i 

0=1,2,3 
;=i 
= 1,2,3 

a,,a,,•«,,•«,,• + —— V-\Hj2i2j"liuij"2iu2j 
dVy) 

T~ ^2:2i2j2ja2i 4) 

where (P represents a generalized lateral load, it follows that 
the energy coefficients V'¥ (0 = 1,2,3) can be written 

(W.D.L.),,. 
+ ( P L( f / l ' /« l /+ f / 2/«2,+ I/3/a3,) (14) 

VL=-
<?a„ 

(10) 

where (W.D.L.)0, represents the contribution of the modal 
deformation associated with ^ , ( 0 = 1,2,3). Since the work 
done by the load is dependent on the specific type (concen
trated load, uniformly distributed load, etc.), the algebraic ex
pressions for the V^'s are left unspecified; so that general 
results can be obtained, particular examples being considered 
later. 

representing a Taylor series about the unloaded state where 
<9 = a^ = 0(0= 1,2,3,4). Specifically, the energy coefficients 
are given by 

Vmi = 2Kl+-^-Tr2Gcb 

V3BI = -^W (-£-) 2 fat + -^Ecb) + -^Gcb 

2,7/ • 

w . i f i , x 1 l n , Af?JL v ( i - ( - i )O( i - ( - iy ) . . . 
2(K' + k')+ iriGcb-4Ecb( T-: if / = 

6 \bir/ ilf 

L \2 a - ( - i)0(i -(-m 
-AErb 

\b-wJ >2f 

J 

ifiVy 

4/4/ • 

T^(T) 2 {Eft+^b) --T*2(4")2 &M{X ~("iy)2 if i=J 

A-^y £>?( ! - ( -1 ) ' ) (1 - ( -1 )0 ifiVy 
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Fig. 4 Sandwich beam loaded by two equal end-moments 

where 

if j=y 

1 if / * / 

if i=j 

^ i f ^ y -

Vm=—^Gcb 

Vmiy=-^(~)(Eft + ^Ecb} 
i - ( - i y 

U\j2i2j • 

2i2i2j2j ~ 

Vim=-z-Tr2Eccv2
c 

**(E/t+-yEcb) 

7T4 / 1 - \ 

**Ecb[~ -i-(^-„?(i-^))] 

where A7 and £' are defined as 

#'' 
i2 IT4 Eft

3 

24(1 - c))L2 

ErL
2 

k'=-
i2b 

if /=y 

if»Vy 

if/'=y 

if iVy 

(15) 

(16) 

(17) 

3.4 Equilibrium Equations and Solution Procedure. Dif
ferentiating equation (14), with respect to each of the a^s 
(st> = 1, 2, 3, 4,), in turn gives the equilibrium equations 

The solution of these equations is obtained numerically 
after the elimination of the passive coordinates a3j and a4i and 
consequent reduction of the number of simultaneous equa
tions, using a standard Newton-Raphson procedure by in
crementing the load. In contrast with the buckling problem, 
the convergence of the method is good because there is a single 
smooth-varying solution at zero load, despite the existence of 
unconnected equilibrium paths at higher load levels. 

4 Results and Discussion 

To explore the interactive features responsible for the de-
stiffening behavior of the system, we next pick a typical sand
wich component from the literature (Brush and Almroth, 
1975), adapted to become a more realistic beam (da Silva and 
Hunt, 1990), and use it to test our general formulation with an 
infinite number of degrees-of-freedom. Specifically, the sand
wich beam is of length Z, = 508 mm, core thickness, 6 = 50.8 
mm, flange thickness ^ = 0.508 mm, flange Young's modulus 
Ef = 68947.57 N/mm2 , flange Poisson's ratio <̂  = 0.3, core 
Young's modulus Ec= 198.57 N/mm2 , core shear modulus 
Gc = 82.74 N/mm2 , and core Poisson's ratio ^ = 0 . 2 , where 
the unrounded form of these constants results from our choice 
to express them in metric rather than the original Imperial 
units. 

4.1 Example 1: Equal End-Moments M. As a first ex
ample, we start by considering a pure bending situation, where 
the sandwich beam, assumed to be simply supported at the 
ends, is loaded by two equal and opposite end-moments, M, as 
illustrated in Fig. 4. Before proceeding with the analysis, it is 
necessary to evaluate the work done by the load in order to ob
tain the expressions for the V^, as earlier indicated. The work 
done by the load is given by the product of load (moment) 
times the displacement (rotation) in the direction of the load 
so that we have 

W.D.L. 
2t + b 

dV 
Jo 

= E vmjay + Vmiau 

E( 
i = i ^ 

+ t(6x) x = 0 + (Ox)x_0dy\ 
, , -_!•/•) J - 6 / 2 J 

((Ox) x = 0 
y = b/2 

y=-b/2 

da2i # 

+ LJ vmaja\iay+ LJ aVmj2i2jauaija2j 

\«ex) X=L 
y=bl2 y=~b/2 s: + «0X) X=L + {Bx)x=Ldy 

j = i j=\ giving 

j = i i=l L z 

(19) 

(20) 

dV 

day 
= Vmi<*3i + Vuiiau 

J=l 

dV 

and finally, using equation (10), 

-K,,. = 0 

Ki = 0 

3«4i j = l 
T, f/4/4y«47+f/2M,«2/ = 0 (18) 

(21) 

r 3 ' /= -
2 x r ( i - ( - i ) ' ) i 

x L — 2 — a A 
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Fig. 5 Moment-rotation curves for a sandwich beam loaded by two 
equal end-moments M 

nondimensionahzed with respect to length to match the strain 
energy terms. 

Solution can now be obtained as previously described. 
These are plotted in Fig. 5, which shows two views of the 
various moment-rotation curves, obtained for an increasing 
number of interacting wave numbers. The linear solution, ob
tained by considering only the snake mode with wave number 
1, is also plotted for comparison. Reflecting the Rayleigh-Ritz 
nature of the model, solutions represent upper bounds to the 
true behavior, the accuracy increasing with the number of 
pairs of modes. Reasonable convergence is apparently 
achieved for more than 19 interacting wave numbers, as seen 
in Fig. 5. 

The typical nonlinear response of the system clearly iden
tifies two different stages of behavior. The first (linear) stage 
corresponds to deformation of the beam mostly in one-half 
sine wave, with little contribution from the other modes, 
representing a good approximation to the exact solution to the 
linearized problem, as obtained by Allen (1969). As the 
response becomes less stiff, the other modes become increas

ingly more important, reflecting the beam (face) on elastic 
foundation (core) effect caused by the compressive forces in
duced in one of the flanges by the bent configuration of the 
beam, corresponding to flexural wrinkling of the sandwich 
beam. Because of the symmetry of the loading with respect to 
the vertical axis of symmetry of the beam, as shown in Fig. 4, 
deformation modes with an even number of waves do not 
contribute. 

4.2 Example 2: Concentrated Load P at Midspan. To 
provide an example of a more common loading case, we next 
consider the same sandwich beam of the previous example, 
loaded by a concentrated load P (per millimeter width) applied 
at midspan, acting on the top face of the beam. Following the 
same procedure of the previous example, we start by 
evaluating the work done by the point load, P, given by 

W.D.L.=p£ (w), 
1=1 y 

or, replacing for the lateral displacement, w, 
1=1 7 = 6/2 

(22) 
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Fig. 6 Load-deflection curves for a sandwich beam loaded by a point 
load P applied at midspan 

W.D.L.-P £[(«*-«*)— [i-l__(l-(-l)<)l] 
''=' ' l (23) 

so that the V'¥ coefficients, again nondimensionalized with 
respect to L, are given by 

"»-~r[-
l r(-!)<< :>- i)/z 

-d-(- 1)0 

1 r(-lr ' •1 
Ki=+-[i-^—(l-(-l)Oj 

(24) 

ri=o 
Despite the different loading case, results are similar to our 

previous example, the sandwich beam once again exhibiting a 
destiffening response triggered by the instability of the com
pressive face. The load-displacement (deflection at midspan) 

curves are plotted on Fig. 6, which includes the linear solution 
obtained by using the overall (snake) mode alone and the cor
responding Allen solution for a simply-supported sandwich 
beam without overhang (Allen, 1969). Reasonable con
vergence is once again achieved for about 20 interacting wave 
numbers, the symmetry of the loading ruling out contributions 
from the even-numbered waves. We note that our overall 
(linear) solution does not exactly coincide with Allen's results. 
This is to be expected, the deformation pattern used to model 
the deflection of the sandwich beam in our linearized case 
given in equation (4a) with i= l being only approximate. 
Hence, the corresponding load-displacement curve is stiffer 
than the exact result obtained by Allen for the linear case, 
given by 

Px2L 
2AEI 

2X 
L 

PL 
A AG 

2 r 
sinhax + zS^l-coshax) ! 

2x 
~L 

(25) 
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Fig. 7 Load-deflection curves for a sandwich beam loaded by a 
uniformly distributed load p 

where / is the inertia of the section, If the inertia of the faces, 
A is a modified measure of the area of the cross-section, E is 
the Young modulus of the faces, G is the shear modulus of the 
core, the remaining constants being defined as 

aL 
(3, =tanh-

AG 

EIAl-If/I) 
(26) 

4.3 Example 3: Uniformly Distributed Load p. Our 
final example consists of the same sandwich beam loaded by 
an uniformly distributed load p (per unit length and per 
millimeter width) spanning the full length of the sandwich 
beam. The work done by the loadp is thus given by 

w.D.L.=-^f;fr 
2t + b ~ Uo 

+ t(w)y=_b/2 + 

6/2 

\-bn
WdyW (27) 

yielding 

W ••>••--* E [ . „ ( - f ) 
L \ 2 1 - ( - ! ) ' 

and, using equation (10) and dividing by L, 

( L \ l - ( 

vh=o 

73* = o 

i - ( - i ) ' 

(28) 

(29) 

Results are shown in Fig. 7, exhibiting the same load-
deflection response of our previous examples, with an overall 
deformation followed by wrinkling of the compressive face. 
Comparison between our overall solution and results obtained 
by Allen (1969) for this loading case are also plotted, showing 
better agreement than the previous case, reflecting the closer 
approximation to the true deflection pattern. Convergence is 
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achieved as for the former cases, the even-numbered waves 
not featuring in the response, as before, owing to the sym
metry of the loading. 

5 Concluding Remarks 

This paper features a distinctive form of interacting 
bending behavior in sandwich beams which is characterized by 
a nonlinear response arising from the interaction between 
modes with different wavelengths. The influence of the 
hourglass mode is crucial, allowing through-core straining to 
take place and enabling the one-sided wrinkling in combina
tion with the corresponding snake mode. As for the buckling 
problem, the cubic cross-terms of energy are crucial for the in
teraction, but here appear largely linking odd-numbered 
modal contributions. 

The flexural wrinkling highlighted by the analysis is closely 
connected to the instability of the compressive face, in analogy 
with a strut on an elastic foundation. This analogy has been 
used to compute a critical wrinkling load, by neglecting the 
overall bending component of the beam and assuming that 
both the core and the tensile face are unstrained before buck
ling (Chong and Hartsock, 1974; Gutierrez and Webber, 
1980); the problem is thus treated as a sudden buckle, rather 
than allowing the wrinkling deformation to develop smoothly 
out of the linear solution, as in the present work. 

It is clear that the thickness of the faces is a crucial 
parameter, large face-to-core thickness ratios resulting in 
linear responses with no wrinkling, which match Allen's an-
tiplane solution (Allen, 1969). This is recently verified by 
O'Connor (1985), using a finite element package for thick-
faced sandwich beams. 

The introduction of the extra degree-of-freedom in the 

generalized hourglass mode constitutes an additional new 
refinement. This has been shown to have a significant quan
titative effect, leading to an additional reduction of effective 
load-carrying capacity of the sandwich beam of the order of 
seven percent. In combination with the tilt component of the 
snake mode, it allows for a shift of the neutral axis of the 
beam, and thus opens the way for the analysis of sandwich 
beams with faces of different thickness. 
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Polynomial Chaos in Stochastic 
Finite Elements 

A new method for the solution of problems involving material variability is proposed. 
The material property is modeled as a stochastic process. The method makes use 
of a convergent orthogonal expansion of the process. The solution process is viewed 
as an element in the Hilbert space of random functions, in which a sequence of 
projection operators is identified as the polynomial chaos of consecutive orders. 
Thus, the solution process is represented by its projections onto the spaces spanned 
by these polynomials. The proposed method involves a mathematical formulation 
which is a natural extension of the deterministic finite element concept to the space 
of random functions. A beam problem and a plate problem are investigated using 
the new method. The corresponding results are found in good agreement with those 
obtained through a Monte-Carlo simulation solution of the problems. 

Introduction 

In recent years the development of mechanical and structural 
systems requiring stringent reliability standards has been wit
nessed. This fact along with the advent of digital computations 
have intensified the interest in the analysis of systems the prop
erties of which exhibit random fluctuations. Introducing un
certainty in the corresponding mathematical models reflects a 
more realistic representation, indeed, of engineering systems 
and of their response to natural loads. The resulting mathe
matical complications, however, are great and have had a 
major impact in precluding an effective treatment of the prob
lem. The current ordinary methods for solving the problem 
are Monte Carlo simulation methods (Shinozuka, 1987), per
turbation methods (Nakagiri and Hisada, 1982; Liu, Bester-
field, and Belytschko, 1988) and Neumann expansion methods 
(Adomian and Malakian, 1980; Shinozuka, 1987). Further, 
Lawrence (1987) has suggested a heuristic Galerkin approach 
for solving the related class of problems. In all of these meth
ods, the approximations involved must be interpreted with 
caution from a perspective of convergence and versatility. In 
a previous publication (Spanos and Ghanem, 1989), the au
thors have suggested a method that makes use of an orthogonal 
decomposition of a random process (Masri and Miller, 1982) 
and a Neumann expansion scheme to achieve a more efficient 
implementation of the randomness into the solution process. 
The solution has been found in good agreement with Monte 
Carlo simulation results over a wide range of random fluc
tuations. This paper extends the ideas presented previously by 
the authors. An orthogonal expansion in terms of the poly-
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nomial chaos (Wiener, 1938, Kallianpur, 1989) is used to rep
resent the random response by a convergent series. The 
proposed formulation is construed as a natural extension of 
the deterministic finite element concept to the space of random 
functions. 

Preliminary Concepts 
Denote by H the Hilbert space of deterministic scalar func

tions defined by mapping a subset D of R" onto the real line 
R. Further, let Q denote the space of elementary random events. 
Then, the Hilbert space of functions defined by mapping Q 
onto the real line will be denoted by 9 . Each map Q-~R defines 
a random variable. Elements of H and G are denoted by roman 
and greek letters, respectively. 

Treat a random process as a collection, (ax{d)}, of indexed 
random variables. In what follows, the indexing set is taken 
to be a subset of the domain D over which the problem is 
defined. This subset may represent either spatial or temporal 
coordinates. 

Consider an operator equation defined over H x 9 

Q(x2,d)u(x2,e) = f(xlte), (1) 

where X( and x2 are elements of D and 6 is an element of Q 
representing the random component. In general, Q(x2, d) is a 
differential or integral operator and u(x2,6) is the response to 
an input/(x1;0). Clearly, both u(x2,6) and/(x,,0) are stochastic 
processes. Given the joint probabilistic information about 
Q(x2,0) and f(xud), the solution is completely determined if 
the joint probabilistic information about Q(x2,d), f(xlt6), and 
«(x1;0) is obtained. Such information, however, is often dif
ficult to obtain. Thus, a more modest amount of information 
is usually sought. First, the joint information requirement is 
replaced by marginal information about the response process 
u(xu6). Secondly, the marginal probability distribution of 
u(xi ,0) is replaced by a set of moments, from which an estimate 
of the desired probabilistic information is obtained. Therefore, 
even before any solution is attempted, several simplifying as-
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sumptions are introduced. In the following a systematic and 
rigorous analysis of problems defined by equation (1) is made. 
It is shown that some of these assumptions can be relaxed. 

Assuming that the dependence of Q(x2,6) on 6 involves a 
random function ax(6), equation (1) can be rewritten as 

L(x2) + S(x2,axJ6))) u(x2,0) = /(x„0). 
"*2' (2) 

In this equation, L(x2) represents an operator obtained from 
Q(\2,6) by statistical averaging over 8. The symbol S(x2,aX2(6)) 

denotes the fluctuations of the operator <2(x2,0) about L(x2). 
The function ax(9) can be thought of as representing the sto
chastic fluctuations about the mean of some property of the 
system that is involved in the operator Q(x2,0). 

The functional dependence on x of realizations of ax is not 
explicitly known. This fact constitutes a major difficulty in 
attempting a numerical treatment of the problem. The diffi
culty can be overcome by using the Karhunen-Loeve expansion 
(Loeve, 1977) which involves a representation of the process 
in terms of a denumerable set of random variables. Specifically, 
otx(d) may be expressed as 

°° I— 
(3) 

where (£,) is a set of orthonormal random variables, and A, 
and cij(x) are deterministic quantities signifying the eigenvalues 
and eigenfunctions of the covariance kernel of ax, respectively. 
In equation (3) the terms in the series are arranged in descending 
order of magnitude of the eigenvalues \ . Obviously, the joint 
distribution of (£,) depends on that of ax. In the case that ax 

is a Gaussian process, the set £ = {£,) forms a Gaussian vector. 
In view of equation (3), equation (2) becomes 

(L(x2) + R(x2,£))«(x2) = /(x,), (4) 

where the symbol R(x2,£) denotes the dependence of the op
erator Q(x2,8) on the random variables (£,-]. 

a set of Nalgebraic equations in the ̂ unknowns \in is obtained. 
The i'th equation has the form 

N n 

YtV,, ]^«[L(x2) + R(x2)£)]z„(x2)z1(x1)c/x2 

fin \R^M )z, (x)dx = 0. (8) 

In general, the set (z,- (x)j is of bounded support; it is non-
vanishing only over a subset of D. Based on this observation 
it is seen that a finite element mesh can be obtained by selecting 
[Zj (x)j to be appropriate shape functions. In this case, car
rying out the indicated integrations by parts a matrix equation 
is obtained 

[L + R(£)]£ = f. (9) 

involving the deterministic NxN matrix L, the random NxN 
matrix R, and the A'-dimensional random vectors p. and f with 
components /*,- and <£,-, respectively. Note that L is a banded, 
symmetric, and positive definite NxN matrix. Further, if the 
set lz,(.x) ] is chosen to be, as is customary in finite element 
methods, a set of piecewise polynomials, then p, will be a vector 
whose elements represent the random nodal responses. 

The preceding development conforms with the deterministic 
Galerkin finite element formulation. The process ax will sub
sequently be assumed to be Gaussian. Also, it will be assumed 
that the process ax appears as a multiplicative factor in the 
expression for the random operator R(x2,£). Then, equation 
(9) can be put in the form 

M 

£*« R„ fi = f, (10) 

where Rm is an A^x N deterministic matrix, f is an A'-dimen
sional deterministic vector and 

R0 s= L and £0 = 1- (11) 

Mathematical Formulation 

Projection in H: Deterministic Finite Element. In equation 
(3) the set (a, (x)) forms an orthonormal basis in the Hilbert 
space H. Introducing a change of basis in H from {«,- (x)j to 
{Zi (x)), the excitation process/(x) can be expanded as 

fix) = £ <te (x). (5) 

Clearly, (z, (x)) can be selected to be expeditious for any 
particular problem under consideration. Similarly, the re
sponse process can be expanded as 

"W = S ***<' W> (6) 

where {/*,-) are appropriate random variables. Truncation of 
the series in equations (5) and (6) at the Ath term represents 
the projection of the functions/(x) and u(x), respectively, onto 
the A'-dimensional subspace of H spanned by [z, (x)) fl i. Sub
stituting for u(x) and /(x) in equation (4) by their respective 
projections onto RN results in the following expression for the 
error 

N 

e = £ [L(x2) + R(x2,?)]z„(£K-0„z„(x). (7) 

In equation (7) (<f>„} are known coefficients independent of x, 
and (^„J are the unknowns to be determined. One way of 
determining these coefficients is to constrain the error to be 
orthogonal to the space spanned by (z, (x)). In this manner 

Expansion of Nodal Random Response Vector p.. The Hil
bert space 9 is complete. Thus, the random nodal response 
vector /t can be expanded in a mean-square convergent series 

/* E c ' y-' (12) 

where c; is a deterministic vector and {7;)" 1 is a basis in 9 . 
In connection with (7,), the notions of homogeneous chaos 
and polynomial chaos will be introduced (Wiener, 1938; Kal-
lianpur, 1980). Let (£,•)," 1 be a set of orthonormal Gaussian 
random variables. Consider the space f p of all polynomials in 
{£/)?ii °f degree not exceeding/?. Let Tp represent the set of 
all polynomials in fp orthogonal to fp^,. Finally, let tp be the 
space spanned by Tp. Then, the subspace Yp of 9 is called the 
pth homogeneous chaos, and Tp is called the pth polynomial 
chaos. Using this basis, equation (12) can be rewritten as 

£ = £ 
pzo m + 11.12. • 

a l , l , . \r f p t t i ^ • • • >£i,)> (13) 

where Tp(.) is the polynomial chaos of order p and the coef
ficients a are deterministic vectors. The superscript n, over a 
refers to the number of occurrences of £1. in the argument list 

for Tp(.). It is noted that the above statement is a variation of 
the Cameron-Martin theorem (Cameron and Martin, 1947). 
Expanding equation (13), jt can then be expressed as 

OO OD ' 1 

A = ^ 0 + I X r > ^ l ) + D I ) a<l./2r^'l Sfc) 
/[ = 1 /] = 1 ;'2=1 
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+ E E E ^1,/2,,3r3«,1 ^ S,3) + • • •, d4) 
l[ = l / 2 = 1 '3 = 1 

where Tp(.) are successive polynomial chaoses of their argu
ment. The polynomial chaoses of order greater than one have 
zero-mean and polynomials of different order are orthogonal 
to each other, so are polynomials of same order but with 
different arguments. Up to the third order, the polynomial 
chaoses are 

T0 = 1 (15) 

(16) r,«,,) 
r^,,,^) ? I , £ I 2 

6<V; (17) 

where Su is the Kronecker delta. In place of {Tp) in the ex
pansion (14), any set spanning the same subspace could have 
been used. For example, the set 

[£o> £/',> fi'iSty ?;'1?;2?;'3> • • • ! 

of nonorthogonal polynomials is readily available. Note that 
using this latter set results in a representation of the response 
process that is similar in form to the one obtained by the 
authors (Spanos and Ghanem, 1989) using a Neumann ex
pansion for the inversion of the random operator in equation 
(10). An orthogonal basis, however, yields better convergence, 
as will be demonstrated in the numerical examples. Note also 
that the first summation in equation (14) represents the Gaus
sian component of the process JX. Thus, for a Gaussian process, 
the above expansion reduces to a single summation, the coef
ficients afl being the coefficients in the Karhunen-Loeve ex
pansion of the process. Equation (14) is an expansion in d. 
Thus, any other dependence of the function fi is carried over 
to the expansion coefficients a,. 

Projection in 9: Stochastic Finite Element. Truncating 
equation (14) at thepth-order polynomial and substituting for 
£ into equation (10) yields an expression for the resulting error 

M M M 

£ a0Rmr0£m + £ Rm £ a,-,rlC€#,)f« + • • • 

+ I X E ••• XX / , r A ^ » (19) 

This error results from truncating the series in equation (10) 
after a finite number of terms, as well as from using a finite 
number of terms in the expansion for the system parameter 
<xx. The error, as expressed by equation (19), is made orthog
onal to the solution space. Mathematically, this condition can 
be expressed as 

<e, r,(7rf(£,, . . . ,£,i))> = 0 s&p (20) 

where ( . > denotes the operator of mathematical expectation; 
•wf (£,-, . . . , £;s) is a permutation operator that chooses, with 
renewal, s elements from the family given by its argument, 
with 0 < ik < M, (\<k<p), the resulting combinations not 
being permutations of each others. This orthogonality con
straint results in a set of algebraic equations that can be solved 
for the coefficients a,- ik, (/i + . . . + ik^s). Once these' 

coefficients are computed, the expansion (14) for the response 
process is determined. From equation (14) it can be seen that 
all the probabilistic information concerning the process u is 
contained in the expansion coefficients. For instance, the av
erage response is equal to a0. Therefore, once these coefficients 
have been computed, the probability distribution of the re
sponse u can, at least theoretically, be determined. 

Numerical Implementation 
The numerical implementation of the projection in H follows 

the same guidelines as those for the deterministic finite element 
methods (Akin, 1982). Thus, the treatment in the present sec
tion is confined to the implementation of the projection in 9 . 
The first step in implementing the proposed method consists 
of expanding the random process ax representing the random
ness of the system parameters. If this process is assumed to 
have a Gaussian distribution, the expansion in equation (14) 
reduces to the Karhunen-Loeve expansion of the process. Then, 
the computations leading to the expansion consist of solving 
an integral eigenvalue equation for the covariance kernel. For 
a number of useful co variance models, the solution for such 
an equation can be obtained analytically. In general, however, 
a numerical solution procedure may have to be implemented. 
The next step in the solution procedure consists of imple
menting the expansion provided by equation (14) for the re
sponse process. The size of the resulting system of equations 
is proportional to the size of the homogeneous chaos used, as 
defined by the number of its basis functions. It can be seen 
that for thepth chaos, tp is spanned by the basis [Tp(irf?(l-h, 
• • • > £ip))) • In general, for thepth homogeneous chaos, using 

j p - i 
Melements from the set (£ , )" i, there are — J J (M+k) ele-

ments in the set of the basis vector spanning the subspace. The 
total number of basis vectors, therefore, is 

P 1 - 5 - 1 

X = 1 + £MII( M + *) 
= 1 •*• * = o 

(21) 

Let the resulting set of L basis vectors be mapped, in a one-
to-one mapping, to a set with ordered indices denoted by 

Then, equation (14) may be rewritten as 17/Jf.,. 

E "i y<- (22) 

Repetitive application of the orthogonality condition, given by 
equation (20) for successive polynomial chaoses, results in the 
matrix equation 

K a = F (23) 

where a is the iJV-dimensional vector of coefficients. In equa
tion (23), K is a LNxLN deterministic matrix consisting of 
block submatrices, where the (/, j) block is an NxN matrix 
given by the equation 

M 

K'j = E R m < y>yj £™ >• (24) 

Further, F is a ZJV-dimensional deterministic vector given by 
the equation 

F,- = <f7/>. (25) 

Clearly, if f is Gaussian and stastically independent of the 
random parameters in the operator Q(x2,6), equation (25) re
duces to 

<f,> i f » = l 

0 if /> 1. 
(26) 

The right-hand side of equation (24) involves computing the 
sums of averages of products of independent Gaussian random 
variables. It is quite straightforward to automate the generation 
of the K,y submatrices as well as their assembling into the global 
matrix K. The order of the resulting system of equations is 
equal to LxN, where N is the size of the corresponding de
terministic system. Note that it has been found in Spanos and 
Ghanem (1989) that values for M of two or four are enough 
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Fig. 1 Plate with random rigidity; exponential covariance model 

for an adequate representation of fairly large levels of random 
fluctuations in the parameters of the system. Then, the increase 
in the size of the system for the stochastic problem is not 
excessive and may be warranted by accuracy and reliability 
requirements. Further, an approach to solve the extended sys
tem of equations is to note that the solution resulting from 
using any lower-order expansion does, indeed, provide a con
verging approximation to the true solution. Therefore, the 
solution from any lower-order expansion can be used as a first 
approximation in an iterative scheme for finding the coeffi
cients of the higher-order expansion. 

Applications 

Random Plane Stress. Consider first a problem involving 
a thin plate, clamped at one side and subjected to a unit uniform 
in-plane tension applied at the opposite side, as shown in Fig. 
1. The modulus of elasticity E of the plate is assumed to be a 
homogeneous random process with mean E and covariance 
function C(xx,y\\x2,y2) reflecting the correlation of the process 
at two positions (xuyx) and (x2,y2) on the plate. The covariance 
function decays exponentially, and is given by the equation 

C(*„ yi; x2, y2) = 4 e~ "•-*>"»*- » i - * " \ (27) 
Here, bx and by represent the correlation length of the process 
in the x-direction and in the ^-direction, respectively, and aE 
is the standard deviation of the modulus of elasticity. The plate 
is assumed to have a rectangular shape with sides of dimensions 
lx and /_,,, respectively. The projection of the solution process 
in H is achieved by choosing a basis set consisting of piecewise 
bilinear polynomials, yielding a bilinear interpolation of the 
displacements inside each element in terms of their nodal val
ues. The plate is, thus, subdivided into 16 finite elements. 

The next stage in the computations consists of solving the 
integral eigenvalue problem posed by the equation 

\inix\,yi) = 
fV2 f1/2 

J-1/2 J-1/2 C{xx ,yi •yX^yJt^yJdXidy, 

(28) 

Substituting equation (27) for the covariance kernel and setting 

i M W i ) = tfHxiWj (yd and A„ = XJi AW, (29) 

the solution of equation (28) reduces to the product of the 
solutions of two equations of the form 

x? *r'c*i) = 
M/2 

1-1/2' 
- l x , - x 2 l . 

W (.x2)dx2 (30) 

The solution of this equation is well documented in the lit
erature (Van Trees, 1968). In the final expression for the ei-
genfunctions, it should be noted that two functions of the form 
given by equation (29) correspond to each eigenvalue. The 
second function is obtained from the first one by permuting 

EXPONENTIAL COVARIANCE: b =1.0, b =1.0 
p = ORDER OF THE HOMOGENEOUS CHAOS 
M = ORDER OF K-L EXPANSION 

5000-SAMPLE MCS 
M=4, p=3 
M=J, p=2 

M=2, p=3 
M=2, p=2 
M=2, p=l 

0.10 0.IS 0.20 0.25 
MODULUS OP ELASTICITY, o e 

0.30 

Fig. 2 Standard deviation of longitudinal displacement at the comer 
of the plate versus standard deviation of the bending rigidity; exponential 
covariance 

the subscripts. Therefore, the complete normalized eigen-
functions are given by the equation 

4>n(x,y) = 
1 

V^ *,"(*)*r 00 + +}x,W*r(y) (31) 

Once the expansion for the system parameters is known, the 
solution procedure outlined in the previous section is imple
mented. Specifically, the matrices L and Rm appearing in equa
tions (10) and (11) are given explicitly by the equations 

and 

where 

R™ = E JD 4>m(rl,r2)V
rP'B°drldr2 

e 

1 = £ JD #rD'B'drldr2, 

De - £epe 

(32) 

(33) 

(34) 

Here, W is the matrix of constitutive relations relating the 
stresses to the corresponding strains over a plate element; De 

is the mean value of If, and B" is a strain interpolation matrix 
derived from fF through the strain-displacement relations. The 
symbol E* denotes the modulus of elasticity over element "e" , 
P6 is defined by equation (34), and IF is the displacement 
interpolation matrix. In equations (32) and (33), the summa
tions extend over all the finite elements. 

Two and four terms, respectively, were used in the Kar-
hunen-Loeve expansion (M=2 and M=4). Polynomial chaos 
or order, up to and including three, were implemented in the 
expansion (14), from which the covariance matrix of the re
sponse is obtained. Figure 2 depicts the results for the nor
malized standard deviation, a0, of the longitudinal displacement 
at the free corner of the plate. The results were obtained from 
approximations using successive orders of Tp. The problem 
was also solved using the Monte-Carlo simulation method. 
Records representing realizations of the modulus of elasticity 
of the plate were obtained by linearly combining the columns 
of the Cholesky factor of the covariance matrix using Gaussian 
white noise as weights. The resulting deterministic problem 
was solved for each realization. The results were then compiled, 
and the desired statistics of the response were extracted. Note 
the agreement of the results from the proposed method with 
those from the Monte Carlo simulation. This agreement is 
quite encouraging since it involves values of the coefficient of 
variation of the medium up to 0.3. The range of value encom
passes most engineering applications. Figure 3 shows the mag
nitude of the coefficients a, of the polynomial chaos in the 
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Fig. 3 Coefficients of the homogeneous chaos expansion for the lon
gitudinal displacement at the free end of the plate; equation (12) 

expansion given by equation (14) for the response. Note the 
negligible contribution of the higher-order terms. 

Beam on Random Elastic Foundation. The second prob
lem involves an Euler-Bernoulli beam of length L, modulus 
of elasticity E, mass moment of inertia /, and mass density m. 
The beam is supported on an elastic foundation having a re
action modulus k{x). It is assumed that k(x) is the realization 
of a one-dimensional Gaussian random process with mean 
value k(x) and covariance function Ckk(xs,x2). Further, as
sume that the beam is subjected to a zero-mean random ex
citation f(x,t). It is assumed that the cross-spectral density 
function of f(x,t) is given by the equation 

Sff(xuW) = e - U ' ^ l / w 6 , (35) 

where xx and x2 denote two locations on the beam b is a 
correlation length of the excitation process, and co stands for 
frequency. In the present analysis, the correlation length b is 
assumed to be a constant. 

The differential equation governing the motion of the beam, 
assuming constant bending rigidity, is 

•12 D a4 

mw + cJt + EIw + k{x) u(x,t) =f(x,t), (36) 

where c is a coefficient of viscous damping. Following a dis
cretization procedure similar to the one used in the previous 
example, the beam is divided into TV = 10 finite elements and 
a matrix equation is obtained of the form 

MU(t)+CU(t)+KU(t)+KfU(t) =f(t), (37) 

where a dot denotes differentiation with respect to time, and 
all the matrices are 2NX 2N. For simplicity, the damping ma
trix is assumed to be of the form 

C = cMM+cKK, (38) 

where cM and cK are two constants. 
Expanding the process k(x) into a Karhunen-Loeve series 

truncated at the Mth term, and taking the Fourier transform 
of equation (37), leads to 

M 

#(«> + 2ji'K>' (*> {/(u) = F(to), (39) 

where 

C/(u) = I U(t)e->"' dt and 

S oo 

and 

(40) 
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Fig. 4 Beam on random elastic foundation subjected to a random dy
namic excitation; exponential covariance model 

H(oJ) = l-w2M+iooC+K+Kf] (41) 

is a deterministic matrix. Equation (39) can be rewritten as 
M 

'+£«*<# w £/(u) = P(o>), (42) 

where 

Q}k) = H(u)-1 Kjk) and P(o>) = //(o/T >P(co). (43) 

The formulation presented in the preceding sections can now 
be implemented by applying equations (14) and (20) to obtain 
a set of algebraic equations in the form of equation (23). 
Alternatively, the inverse of the operator appearing in equation 
(42) can be expressed via its Neumann expansion (Shinozuka, 
1987) in this case the spectral density matrix for the response 
process becomes 

/ = i y = i 

( - ! ) ' • Ew <*) Spp(u) Ltd 
(k) (44) 

It is numerically more efficient to expand SPP(ui) in its spectral 
series and perform the spatial discretization on the eigenfunc-
tions of the expansion. Indeed, this was implemented into the 
finite element code developed to solve this problem. It was 
observed that four terms from the spectral expansion of SPP(ui) 
were enough to reach convergence in the numerical results. 
The number of necessary terms depends, of course, on the 
choice of the parameter b in equation (35), which was taken 
to be equal to 0.1. 

In the numerical implementation of this problem, an ex
ponential covariance kernel was used for the reaction modulus 
k(x) in the form 

Ckk(Xl,x2) = de-Sx^Wb (45) 

where b is a correlation length equal to 1 and ak is the standard 
deviation of the process. A unit length for the beam was as
sumed, and the mean value of the reaction modulus of the 
foundation was set equal to 1. The mass per unit length was 
taken to be 0.2, the bending rigidity EI of the beam was set 
to 2. It was also assumed that the constants cK and cM appearing 
in equation (38) are both equal to 0.1. The correlation coef
ficient for the supporting foundation was taken equal to 0.06 
and two terms were used in the K-L expansion of the corre
sponding process. The physical set-up is shown in Fig. 4. Figure 
5 shows the spectral density S„„(co) of the displacement at one 
end of the beam. The problem was also solved using the Neu
mann expansion already described (Spanos and Ghanem, 1989). 
The results are shown in Fig. 7. Note the good agreement for 
both methods until the damped natural frequency of the beam 
is approached, causing the norm of the matrix 
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MONTE CARLO SIMULATION 
Olh ORDER HOMOGENEOUS CHAOS 
1st ORDER HOMOGENEOUS CHAOS 
2nd ORDER HOMOGENEOUS CHAOS 
3rd ORDER HOMOGENEOUS CHAOS 

2.0 2.5 3.0 3.5 4.0 4.5 
FREQUENCY 

Fig. 5 Spectral density of the displacement at the end of the beam 

2.0 2.5 3.0 3.5 4.0 4.5 
FREQUENCY 

Fig. 6 Spectral density of the displacement at the end of the beam 

/ + E fc $ (*> 

to increase beyond the radius of convergence of the Neumann 
expansion. The Monte Carlo simulation was conducted using 
the Cholesky decomposition of the covariance matrix as de
scribed in the previous example. 

Conclusion 
A new method has been developed for treating problems 

involving random media. A complete basis in the Hilbert space 

9 of random functions is identified. This basis consists of the 
polynomial chaoses which are orthogonal polynomials in the 
white noise. The response is expressed as a convergent series 
along this basis. The method provides a natural extension for 
deterministic finite element methods to problems exhibiting 
random system behavior. The proposed method was applied 
to a plate problem involving random variability in the material 
properties and to a problem of a beam on a random elastic 
foundation subjected to a random dynamic loading. Good 
agreement between the results of this method and pertinent 
Monte Carlo simulation results over a wide range of random 
fluctuation levels was observed. 
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Dynamics of the Elastica With End 
Mass and Follower Loading 
Orthotropic, polymeric tubes subjected to internal pressure may undergo large de
formations while maintaining linear moment-curvature behavior. Such tubes are 
modeled herein as inertialess, elastic cantilever beams {the elastica) with a pay load 
mass at the tip and with internal pressure as the eccentric tip follower loading that 
drives the configurations through large deformations. From the nonlinear equations 
of motion, dynamic beam trajectories are calculated over a range of system param
eters for the special case of a point mass at the tip and a terminated ramp pressure 
loading. The dynamic responses, which are unique because the loading history and 
the range of motion are fully defined, are presented in nondimensional form and 
are compared to static responses presented in a companion study. These results are 
applicable to the dynamic design of high flexure, tube-type, robotic manipulator 

Introduction 
The statically loaded elastica has been studied for over 200 

years, starting with the work by Euler (1744); but studies of 
the dynamically loaded elastica remain scarce. The literature 
survey by Schmidt and DaDeppo (1971) lists no solutions of 
dynamic elastica problems. Keller and Ting (1966) solved the 
problem of a vibrating beam with finite displacements using 
perturbation methods, but solutions of this type are not suit
able for the larger range of deformations of the present prob
lem. A solution of a physically different, dynamic elastica 
problem that models the behavior of paper as it exits a copying 
machine was recently solved by Mansfield and Simmonds 
(1987). To our knowledge, there are no published studies deal
ing with our current topic: the dynamic behavior of an in
ertialess elastica, a cantilever beam with a tip mass and tip 
follower loadings that drive the system to unique dynamic 
configurations. We now discuss the physical basis for this 
elastica. 

Our work herein was motivated by the need to understand 
and then control the motion of high flexure, orthotropic, tube-
type manipulator arms driven by internal pressure. An element 
of such an arm is illustrated in Fig. 1(a). Typically , such an 
element is fabricated from polyurethane, has a thin corrugated 
bellows section for part of its circumference, and a flat side 
that contains the neutral axis of bending. The center of pressure 
on the rigid end caps is offset from the neutral axis by a distance 
dd (Fig. 1(a)) and the element bends when pressurized (Fig. 

'To whom correspondence should be addressed. 
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED 
MECHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Leon 
M. Keer, The Technological Institute, Northwestern University, Evanston, IL 
60208, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME 
Applied Mechanics Division, September 9, 1988; final revision, May 19, 1989. 

1(b)), lifting the payload Wd. A laboratory model of a ma
nipulator arm composed of several such elements end-to-end 
was designed by the second author and is described by Horgan 
(1987). A general static analysis and adaptive control schemes 
for such tube-type elements and manipulator arms are pre
sented by Wilson and Mahajan (1989). 

To demonstrate that the tube elements of the type described 
in these last two references and in Fig. 1(a) may be modeled 
as the elastica, we performed a series of static experiments on 

(b) 

NEUTRAL AXIS 

-CENTER OF 
PRESSURE 

END MASS 

SECTION B-B 

Fig. 1 (a) Unloaded tube element; (b) pressurized tube element end 
mass 
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Fig. 2 Elastic behavior of an orthotropic polyurethane tube with a tip 
moment (pneumatic finger AU-GR1-004, Simrit Corp., Arlington Heights, 
It) 

Fig. 4 Free-body sketch of end mass 

Fig. 3 Beam model with coordinate system and loads 

several commercially available tube configurations. A sche
matic view of our experimental setup is shown in the insert of 
Fig. 2. In that figure, we present data for one typical tube 
element for which the model number and manufacturer are 
given in the figure caption. In the experiment, we used pairs 
of dead weights, Wx, separated by a distance, d0, to effect pure 
moments, W0 d0, at the tip of the vertical cantilever tube. For 
discrete values of tip moment, we traced directly on paper 
placed behind the tube the orientation of the tip bar and the 
inner radius of the tube; and from these tracings we measured 
the tip angle, a, and the radius, R, of the bent tube. 

The results of Fig. 2 are for two tests performed 24 hours 

apart and are typical of the results that we obtained for geo
metrically similar polyurethane tubes, both larger and smaller 
in size. Note that our tube had an initial curvature so that 
neither a nor \/R was zero in the unloaded state. We observed 
no tube buckling even as a approached 80 deg. The straight 
lines of Fig. 2 are the least-squares fit to the experimental 
data: the solid line for moment-tip angle data and the broken 
line for moment-curvature data, for which the respective cor
relation coefficients (/--values) were 0.998 and 0.996. From the 
slope of the moment-curvature line, the tube's bending stiff
ness, EI, was calculated as 0.0176 N-m2. These experimental 
data justify modeling such tubes as the elastica. 

In other experiments in which we pressurized the same con
figuration tested above, we found that the tube could lift a 
dead-weight tip load that was up to 30 times the tube's self 
weight. This result serves to justify a further assumption of 
our analysis: that if the tip mass or payload is very large 
compared to the tube mass, the inertia effects of the tube may 
be neglected. In the analysis that follows, this end mass or 
payload is constant. Deformations of the elastica are achieved 
by applying a prescribed internal pressure to the tube, which 
is equivalent to prescribing a time-varying eccentric follower 
load at the tip. The static behavior of this model of the elastica 
was presented in a companion study (Wilson and Snyder, 1988). 

Mathematical Model 
The idealized beam model, the coordinate system, and the 

tip loads are shown in Fig. 3. The beam is rigidly attached at 
point A to the end mass, a block with its center of gravity at 
C. The forces acting on the block are: its self-weight Wd\ the 
prescribed driving pressure force, Fd(td), a follower load; and 
the elastic reaction forces of the beam at point A. A free-body 
sketch of this block is shown in Fig. 4. Here, Pd(td), Qd(td), 
and Md(td) are the beam's reaction forces on the block where 
Pd and Qd are parallel to the fixed coordinate axes, xd, and 
yd, respectively. All damping forces are neglected. 

In Figs. 1,3, and 4 the subscript (Zona quantity indicates 
that the quantity has a physical dimension such as distance or 
time. The following nondimensional system parameters are 
defined in terms of these physical quantities. 
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F= 
EI EI Q = 

' -? 

L 

y= 
y<i 

QcL2 

EI 

eXd 

W= 
EI 

Zyd 

M = 
MJL 

EI EI 

(la) 

(lb) 

(lc) 

Here, Jd is the mass moment of inertia of the block about an 
axis perpendicular to the plane of motion and passing through 
point C. L is the length of the beam, EI is the beam's bending 
stiffness, and g is the acceleration due to gravity. 

When Newton's laws are applied to the block in Fig. 4, and 
equations (1) are used, the equations of motion are expressed 
as 

dhc 
dt2 

dt 

= JVcosff + P + F cosoi 

2 = W sin/3 - Q + Fs ina 

d2a 
J ^ = F(d-ey)-M+ 

P(ex sina - ey cosa) + Q(ex cosa + e., sina). 

(2) 

(3) 

(4) 

For the special case in which the block is a point mass, J = 
0 and equation (4) becomes 

M = F d. (5) 

In equations (1) and (2), W and d are known constants and F 
= F(t) is a specified function of time. For the case of a point 
mass, equation (5) establishes M = M(t) when F(t) is spec
ified. 

We now establish the relationships among the reaction loads 
P, Q, and M and the tip coordinates x, y, and a. To do this, 
we assume that the beam behaves as follows: It is linear 
elastic; its transverse shear deformations are negligible; it has 
a uniform flexural stiffness EI; its neutral axis in bending is 
inextensible; and it is straight when not loaded. With these 
assumptions, Wilson and Snyder (1988) showed that the tip 
coordinates in integral form are 

{ a + t 

e+e, 
o cos(4> — 00)d<j) 

0 •\/a + b coscj) 

f«+9osi 
J»+9„ . 

sin(</> - dn)d(j) 

V a + b cos0 

and the condition of inextensibility (or constant L) is 

d<ji 

'° \Ja + b cos</> 

where 

a = M2 - b cos (a + 60) 

b = 2\/p2 + Q2 

= arctan ( — ) , with -7r<0n<7r. (?) 

(6a) 

(6b) 

(6c) 

(6d) 

(6e), 

In general, the magnitudes alone of the forces P, Q, and M 
do not uniquely determine the tip coordinates. For our model, 
however, the sequence of loading and range of motion are 
specified so that the elastica has single curvature as shown in 
Figs. 1 and 3. Thus, the three equations (6a) and (6b) provide 
the unique relation among the three loads P, Q, and M and 
the three tip coordinates x, y, and a. Equations (2), (3), (4), 

O l - T 

fig. 5 Terminated ramp loading function 

and (6), together with the loading and the initial conditions, 
define our elastica. 

Consider the special case of a point mass at the tip. Equation 
(4) then reduces to (5), and in integral form equations (2) and 
(3) may be written as: 

Jo Jo 

Jo Jo 

<F($)cos«(f) + P(f))rf$<fy + 

w(^t2cos(3 + tjt(0) + x(0) 

(F ( f ) s in« t t ) -Q(€) ) <*£*? + 

-x(t)j = 0 (7) 

( : 
W ( r '2sin/3 + ^ ( 0 ) + y(0)-y(t)J =0. (8) 

2 ' dt 

With the trapezoidal rule, equations (7) and (8) become: 

iDlCtoHFjComj + Pj)) + 
/=o v=o ' 

wl - n2h2 cos/3 + nhx0 + x0-xn) =0 

£ Dl ( t D<-(Fj sinaj - Q,)) + 
,-=o v=o ' 

(9) 

w(\« h2 sin/3 + nhy0+y0-y„ ) =0 . . ) -< (10) 

With h as the step size and k and n as integers, the time, tip 
angle, initial conditions, and loads are, respectively: 

t = nh uk = a(kh) D"k=
j2 

h, if k = Q or k = n 

h, if0<k<n 
(11a) 

dx dv 
xk = x(kh) x0=—(0) yk=y(kh) y0= j ( (0) (life) 

Fk = F(kh) Pk = P(kh) Qk=Q(kh). (lie) 

Numerical Results and Discussion 
An IBM 3081 computer and IMSL (1987) software were 

used to obtain numerical results. Program listings are given 
by Snyder (1988). Here, equations (9) and (10) and subroutine 
DNEQNF were used to march out discretized solutions to 
equations (2) and (3). Subroutine DQDAGS and golden section 
bracketing were used to evaluate the integrals of equations (6). 

Numerical results were based on a range of system param
eters representative of practical, polyurethane tubes (beams) 
subjected to air pressure levels available in most laboratories. 
The terminated ramp function of Fig. 5, with a rise time, t, 
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Fig. 6 Variation of end rotation with time when W = 3 and d = 0.1 
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Fig. 8 Trajectories of the elastica with W = 5, d = 0.1, and T = 10 

and a terminal force, Fh, was chosen as the driving force, F(t). 
To avoid beam flipover (Wilson and Snyder, 1988), values of 
Fh were selected for each combination of W and d such that 
the target static equilibrium value of a would be ir/2. The 
beam was initially at rest with a static pressure force, F = 
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1.0 
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Fig. 9 Trajectories of the elastica with W = 0.5, d = 0.2, and T = 10 
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Fig. 10 Trajectories of the elastica with W = 5, d = 0.2, and 7" = 10 

0.1 Fh, and j3 was chosen as zero. For W = 0.5 and 5.0, for 
d = 0.1 and 0.2, and for T = 10 and 20, trajectories of the 
dynamic elastica were calculated using time steps, h, of 7750, 
77100, 77200, and 77400 (77300 was used for T = 10, d = 
0.2, W = 5). In each case, h = 77200 gave results that agreed 
to at least three significant figures with the results for the 
smaller step size. Thus, h = 77200 was used to obtain the 
results shown in Figs. 6-12. 

Figure 6 shows the tip rotation, a, as a function of time for 
W=3, d=0.l, and T= 10 and 20. This behavior, which is 
analogous to the dynamic response of an undamped linear 
oscillator, typifies the dynamics of the elastica for the range 
of parameters studied herein. On the IBM 3081 computer, 
about 18 minutes of CPU time was required to generate the 
curve for T = 10 and about 13 minutes was required for T 
= 20. 

• Each of Figs. 7-10 show: solid lines for the statically-loaded 
elastica at the initial and target positions; uniform dashed lines 
for the trajectories of the dynamically-driven elastica as time 
increases; and nonuniform broken lines for the envelopes of 
oscillation when / > T. With a fixed T and d, when the am
plitude of the tip oscillations about a = 7r/2 are compared 
for the two extremes of tip mass, the higher W effects the 
higher amplitude of tip oscillation. These figures also show 
that the target positions of the tip of the elastica vary with 
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Table 1 Initial and target tip coordinates based on static computations 
(Wilson and Snyder, 1988) 
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3.0 

4.0 

5.0 

Initial 

xo 

.99914 
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.99909 

.99915 

Position, F Q 

y D 

.036230 

.034711 

.032601 

.031157 

.030070 
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.044936 

.042686 
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.035524 
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= °-l Fh 

"o 
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.086747 
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Fh 
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10.0311 
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7.46249 
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9.34016 

xh 
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.51554 

.52176 

.53355 

.54457 

.55490 

.56461 

„ h = »/2 

Vh 
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Fig. 11 Variation of overshoot with end mass when d = 0.1 Fig. 12 Variation of overshoot with end mass when d = 0.2 

both tip mass and eccentricity; it is not possible to drive the 
tip of the elastica to identical target positions with two different 
tip masses. Table 1 lists the static initial and target tip coor
dinates and the terminal pressure loads for each case evaluated 
in these studies. 

In applications such as the positioning of the payload, it is 
important to know the amount that the tip overshoots its target 
position. Define angular overshoot as 

Aa 
TT/2 

(14). 

where amax is the maximum dynamic tip rotation and -ir/2 is 
the target tip rotation. Figures ll and 12 summarize the nu
merical results, and show that for a fixed T and W, the 
overshoot decreases dramatically when d is increased from 0.1 
to 0.2. In these two figures, the symbols denote the points in 
parameter space chosen for the numerical calculations. The 
connecting lines are cubic spline fits. 

In summary, we have represented a load-carrying, canti-
levered, orthotropic tube with high bending deformations as 
an elastica with a point mass at its tip. The driving force is an 
eccentric follower load. We calculated the pre-flipover dynamic 
trajectories and end-point overshoot of this ideal elastica. The 
results, calculated in terms of nondimensional system param
eters, are useful in the design of novel, highly-flexible robotic 
arm manipulators and may serve as the basis for algorithms 
employed for active motion control of such arms. Beyond the 
scope of the present studies, and perhaps of less practical 
interest, are the topological folds close to and beyond the points 
in parameter space that lead to static flipover as predicted by 
Wilson and Snyder (1988). 
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CALL FOR PAPERS 

A Conference on 
HIGH TEMPERATURE CONSTITUTIVE MODELING: 

THEORY A N D APPLICATION 

To be Held at the 
1991 ASME Winter Annual Meeting 

Atlanta, Georgia 
December 1-6, 1991 

A conference of about forty papers is being planned by the AMD-MD Joint Committee on Constitutive Equations. The 
proceedings of this conference will be bound as an ASME volume, and made available at the time of the meeting. The major 
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Dynamics of a Weakly Nonlinear 
System Subjected to Combined 
Parametric and External Excitation 
In this paper we study the dynamics of a weakly nonlinear single-degree-of-freedom 
system subjected to combined parametric and external excitation. The averaging 
method is used to establish the existence of invariant tori and analyze their stability. 
Furthermore, by applying the Melnikov technique to the average system it is shown 
that there exist transverse homoclinic orbits resulting in chaotic dynamics. 
Numerical simulation results are also given to demonstrate the theoretical results. 

1 Introduction 
Recently, there has been increasing interest in the problem 

of nonlinear dynamics such as chaos and bifurcation 
behavior. In particular, the existence of chaos in strongly 
nonlinear systems has been established through experiments 
and numerical simulation (see, e.g., Moon, 1987). It was also 
shown, by a perturbation technique originally proposed by 
Melnikov (1963), that for periodically forced, strongly 
nonlinear oscillators there exist transverse homoclinic orbits 
which are responsible for the chaotic dynamics (cf., Holmes, 
1979; Salam and Sastry, 1985; see also Guckenheimer and 
Holmes, 1983). However, strong nonlinearity is not always 
necessary for chaotic dynamics to exit. In fact, HaQuang et al. 
(1987) found chaotic motions in numerical simulation of a 
weakly nonlinear single-degree-of-freedom system, although 
theoretical evidence is not given. 

In this paper we study the dynamics of a weakly nonlinear 
single-degree-of-freedom system subjected to combined 
parametric and external excitation: 

x+8x+(l + $cosi>t)x + ax3 =ycosoit, (1) 
where damping 5, nonlinearity a, parametric force amplitude 
(3, frequency v, and external force amplitude y are small and 
frequency u is near unity, so that the primary resonance to the 
external excitation is assumed. Also, an overdot denotes dif
ferentiation with respect to time t. 

Equations of type (1) were considered in Ness (1971), and 
Troger and Hsu (1977), who used the averaging method to ob
tain the steady-state (periodic) solutions. Also, Plaut and 
Hsieh (1987), and HaQuang et al. (1987) observed chaotic mo
tions in numerical integrations of the systems similar to (1). 
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The outline of this paper is as follows: In Section 2 we 
state the averaging theory in a suitable form and apply it to 
obtain a nearly integrable system. We describe the integrable 
structure of the unperturbed system when there exist 
separatrix loops. 

Equation (1) has two frequencies, co and v which are 
generally incommensurate. Hence we have to treat (1) as a 
nonlinear oscillator with quasi-periodic forcing, so that the 
most simple steady-state solutions are quasi-periodic and con
struct invariant tori in the extended phase space. In Section 3, 
analyzing periodic solutions of the averaged system, we 
establish the existence of invariant tori and determine their 
stability. 

In Section 4 we first review the Melnikov technique. Then, 
applying it to the averaged system, we show that there exist 
homoclinic orbits resulting in chaotic dynamics of (1). The use 
of the Melnikov method to analyze averaged systems was first 
proposed by Holmes (1980), but in many applications, the per
turbations of the averaged systems have relatively rapid 
oscillation, so that Melnikov functions become exponentially 
small and serious technical problems arise (see Sanders, 1982; 
Guckenheimer and Holmes, 1983, Section 4.7). Holmes 
(1986), however, could neglect higher-order time-dependent 
terms and avoid these difficulties in the analysis of a two-
degree-of-freedom system. In equation (1) the existence of 
slowly-varying parametric excitation prevents our analysis 
from these problems.1 

In Section 5 we demonstrate the theoretical predictions by 
numberical simulation using the Runge-Kutta-Gill method. In 
Section 6 conclusions are given. 

2 Equation of Motion and Averaging 

2.1 Van der Pol Transformation. We introduce two small 

'After our work was finished, we learned of work by Holmes et al. (1987) 
who overcame many of these difficulties resulting from exponential smallness of 
the Melnikov function. 
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parameters e and /it, such that 0 < € < < ^ < < 1 . Let a = ea, 
7 = e7, v = ey, 5 = e/x8, and /3 = e/x/3. Then equation (1) becomes 

x + e/iSx+ (1 + efi/5cosevt)x+ eax3 = e7cosco?, 

or, as a first-order equation, 

x=y 

y = -x+e{ [ -ax3 +ycoso)t] + n[ -by— (0cosevt)x] } . (2) 

The system (2) contains a "fast" time t and a "slow" time et. 
We consider the primary resonance to the external excitation 
co ~ 1 and set co2 - 1 = eQ. 

Using the invertible Van der Pol transformation 

A = 

_y. 

cosotf — <j)-'sina>? 

-sinco/ -co~'cosco/ 

cosco^ sinco/ 

- cosinatf — cocosco^ 
(3) 

we have 

u = - e [ Q(ucosut — ysinco?) - u(ucos,u>t 
y co 

— ysinco?)3 + 7cosco^] + jx [5co(usinco? 
CO 

+ ycoscoO - /3(wcoscof — ysincoOcosec/] j since?, 

v = - e J [ ti(ucoscot — v sinco?) - a(«cosco? 
v. co 

— ysincoO3 + 7cosco?] + JX [ 5to(wsinco? 
co 

+ vcosoif) - fi(ucosut — DsincoOcose^] f cosco/. 

The system (4) contains slowly varying terms and is of the 
form 

(4) 

x = e (f(x, coO + /xg(x, evt, oit)} 

where 

" iT 

^ V __ 
, f = vr 

Ju 
. g = 

-gr 
^82^ 

€R2 , 

(5) 

(6) 

and f(x, 0) is 27r-periodic in 0 and g(x, T, 0) is 27r-periodic in 
both T and 0. 

f(y)= -jr\0 «(y. <*t)dt, g(y, T ) = — j o g(y, T, <*t)dt. (9) 

It is shown by a straightforward calculation that w„(y, r, 8) 
and h£t(1(y, T, 0) are 2-?r-periodic in T and 0. Moreover, if x ( 0 
and y(t) are, respectively, solutions of the system (5) and the 
truncated averaged system 

y = d f ( y ) + Mg(y. evt)}, (10) 

with x(0) = x0 and y(0) = y 0 , and also x0 = y0 + 0(e), then 
x ( 0 = y(t) + 0 ( e ) " o n a time scale t~l/e. 

We consider Poincare maps Pe>M, PE i ( I associated with (5) 
and (10). The systems (5) and (10) can be rewritten as 

x = e{f(x, 0) + Aig(x, T, 0 ) ) , f = ev, 0 = co, (11) 

y = e(f(y) + ^g(y, r ) J , t = ev, 0 = co, (12) 

where (x, r, 0 ) , (y, T, 0 ) € R 2 x S 1 x S 1 . We define a global 
cross-section E = f ( x , T , 0 ) € R 2 xSl xS1 10 = 0 ) , and obtain the 
Poincare maps P , P :E-*E, such that 

Pe^.(x(0),T)~(x(T),T + evT), (13) 

P£ , r:(y(0), r ) - ( x ( r ) , T + e V r ) , (14) 

where x ( / ) and y(t) are solutions of (5) and (10). By the 
averaging theorem we find that P£j / l is well approximated by 

K*as 

Assume that the averaged system (10) has a hyperbolic 
periodic orbit y^ (note that the trajectory of y^ is independent 
of e). Then the closed curve, -yM, is a normally hyperbolic in
variant 1-torus of the averaged Poincare m a p , Ptj/1. By the in
variant manifold theorem (Hirsch et al . , 1977) this implies that 
for sufficiently small e, the Poincare map P £ =P E i / l + 0 ( e ) has 
a normally hyperbolic invariant 1-torus y near y^. (See Fig. 
1(a).) The flow of the suspended system (11) also has a 
normally-hyperbolic invariant 2-torus near y^xS1. Since the 
action of Pt gives rise to the rotat ion by evT in the T-
direction, the invariant torus yt isn ' t subjected to phase lock
ing. Thus , if 7M has period 2-xlev, then quasi-periodic motions 
occur in (5), as shown in Fig. 1(b). 

2.3 Nearly Integrable Averaged System. Applying the 
averaging method to (4), we obtain a nonau tonomous equa
tion 

u= j \Uv u{u2 + v2)v 
2co >-L 4 

e 
2co {[- Uu + 

+ ju[ — 8cou — fivcosevt]j, 

• ] • 
a(u2 + v2)u-y\ +/JL[-8OIV 

- Pucosevt] j . (16) 

2.2 Averaging Theory and Poincare M a p . We now p 3 
outline the averaging results for the system (5). Consider u= \Qv — a(u2 + v2)v 
T = evt as a new state variable. Then, the system (5) can be writ- ^ 
ten in the s tandard form 

Changing time variable t->et/2w, (16) becomes 

3 

4~ 
+ n[ — &ow — j3vcosv0t 

x = e[f(x,wt) + iig(x,T,wt)}, f = ev. (7) 

The right-hand sides of (7) are of period T= 2ir/w in t. Since g 
is 27r-periodic in T, the (x, T) phase space of (7) is the product 
R2 X S1 , where S1 = R/2ir is the circle of length lir. 

Applying the averaging theorem (see Hale, 1969; 
Guckenheimer and Holmes , 1983; Sanders and Verhulst, 
1985) to (7), we can show that there exists a change of coor
dinates x = y + eWj, (y, evt, u>t) under which (5) becomes 

y = e{f(y) + ^g(y, evt)} +e2h e ,„(y, evt, cot), (8) 

where the subscripts e and n indicate functions of e and /x, and 

- [ • tiu-\—— a(u2 + v2)u — y + /x[ — 8cov + fiucosv0t], (17) 

where v0 = 2co^. By the transformation 

J= 
UL + VZ 

(j> = ta.n~1(v/u), 

(17) can be written as 

j= — y^/2Jsm<t> — n(28coJ), 

3 7COS<?i 
</>= — OH aJ ==—Yfxpcosvr.t. 

2 V27 

(18) 

(19) 
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2X /E I / 

Zx/a 
(b) 

Fig. 1 Relationship between the averaged and the full system; (a) In
variant tori 7(1, y , (b) quasi-periodic motion 

When /J. = 0, (19) becomes a completely integrable Hamilto-
nian system 

j= -y\f2Jsin4>, 

<£ = -Q + —aJ-
2 

7cos</> 

27 
(20) 

H(J,<j>) = -QJ+ -—aJt-ys/Z/cosft). (21) 

where the Hamiltonian energy is 

3 

T 
We now describe this integrable structure, which will be 

used in the following sections. Here we assume that a > 0 , 
fi>0, and 0<7<4/9(f iVa) 1 / 2 . Then there exist centers 
(J,4>) = 0',, 7r), (/3> 0), and a hyperbolic saddle (/'2, ir), where 
0 < / , < / 2 <j\ are roots of the cubic equation 

We denote these fixed points (y'i> 7r)> (/2> "")> (A, 0) by p,, 
/ = 1 , 2, 3. The level set 

H(J,<fr)=H(J2,w)=H0 (23) 

is composed of two homoclinic orbits, T+ , T_ , and the point 
p2 . The homoclinic orbits, (7 ± ( 0 . 0± ( 0 ) , are given by 

2r+/-_ 
/ ± (/): 

(r+ - r _ )cosha?± 

r * / 
rns 1 — L7V27±(0 V 

+ - i - aJi (t) 

(r++r_) 

QJ± (t) 

-»•)]• 

+72-

(24) 

w h e r e a = 3a\T- r + r _ / 4 , r ± = 2 ( K ± V 2 « y 2 ) , a n d 
K = 2Q/3a —/2. The phase portraits are shown in Fig. 2. Note 
that we consider the phase space (/, </>) as R x S 1 . Also, the 
level set H= 0 contains the line / = 0 on which the vector field 
is singular, and thus the orbits with H=0 have discontinuities 
at J=0,<j> = TT/2, and J= 0, <j> = 3TT/2. 

3 Invariant Tori 

For small j t>0, the averaged system (19) has hyperbolic 
periodic orbits ( / , ( / ) , 4>-,(t)) near fixed points p,, /= 1, 2, 3, 
of (20). Similarly to (13) we define a Poincare map i% : E—-E 
for the suspended flow of (2) (see also (11)). By the transfor
mations (3) and (18), and the averaging theorem (cf., section 
2), these hyperbolic periodic orbits of (19) correspond to nor
mally hyperbolic invariant tori Th /= 1, 2, 3, of the Poincare 
map Feii, and equivalently to normally hyperbolic invariant 
2-tori for the suspended flow of (2). The orbits on the in-

2 12a" 
Fig. 2 Phase portraits of (20); (a) 0<-y< — A 

9 

W T <y< — - v / — 
9 * a 

variant tori indicate quasi-periodic motions. In this section we 
obtain approximate expressions for Th /= 1, 2, 3, and deter
mine their stability using perturbation techniques. 

3.1 Periodic Orbits of the Averaged System. We assume 
the periodic solutions (7 , (0 , <M0)> ' = 1. 2, 3, of (19) to be 
of the form 

M0 =jt+ &(*), /= l ,2 ,3 , 
« , ( 0 = ir + / M j / ( 0 . ' = 1 . 2, * 3 ( 0 = / " j 3 ( 0 . (25) 

Substitution of (25) into (19) yields, to 0(1), 

£/=±W27̂ ;-25w/,-, 
3 

*'= [~T a : F ^ " 3 / 2 ] ^ + | 5 w , 8 , '» ' ' * = 1 , 2, 3, (26) 

where the upper choice of sign refers to the cases i = 1, 2 and 
the lower choice to the case i = 3 . Since the systems (26) are 
linear, we can solve them directly to obtain periodic solutions 

^=AiCOSv0t 

p0A 5co 
v. = T " ' sim/0?± — \l2ji, i= 1, 2, 3, 

rJVi y 
where 

A,= ± 

X? = r 
2 3 

, / = ! , 2, 3, 

2 . =F — a7V2/;, i = l , 2 , 3 . 

Here we assumed 

(27) 

(28) 

(29) 

(30) v0*K /'= 1 ,2 ,3 . 

Obviously, for small//> 0, the periodic orbit ( ^ ( O ^ C ) ) 
is unstable. We now calculate the stability of the orbit (J{ (t), 
4>i(t)). Consider small perturbations of (J{(t), </>](/)) a n d 
let 
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0 .5 

Fig. 3 Instability regions in the v0-infi plane; « = 2, 7 = 1.5, fi = 3, 
fiJu = 0.05. Numbers 1 and 3 represent the periodic orbits (J,(i>, <t>i(t)), 
1=1,3. 

J=Jx(t)+AJ, <£ = 0,(O+A</>, (31) 

where A/and Ac/> are small. Substituting (31) into (19) and us
ing (25) and (27), we obtain, to 0(/i,A/,A<^), 

iVl , 
U=-»(-

2/', 
bo>)AJ 

) • 

+ (yJlfi+ix—p=UcosjyW. v V2/, / 2y, 

A<t> = ^ra-ii^)+tl 37^i 
(2/-,)3/2 

/ M i 

When n = 0, (32) becomes 

(2/,)5/2 

sin!<0/ —5coJA0. 

C O S J / Q / AJ 

(32) 

A/=7V2y',A</)> 

J_ Y_ 
2 " ( 2 / , ) ^ 

and solutions are given by 

LH^«~l£^YJ> 
A J=Kcos \ , / + LsinX [ ,̂ 

A<£ = 
7V2y 

(-^TsinX^ + Z-cosXjO, 

(33) 

(34) 

where K and L are constants. For small n>0 the trivial solu
tion (A/, A</>) = (0, 0) of (32) is unstable only if c0 « 2X,, as in 
the Mathieu equation with small damping. We assume 
^ = (2X,)2 + 0(/i)andset 

Aiff,=(V2)2-Xf. (35) 

Using the transformation 

AJ=Z\Cos v0t — z 2 s i n v0t, 

A<f> = 
1 1 

7^2/^ 2 • ( -
1 

c 0 \ — ZiSin —— vat —z2cos • "o'J 

(36) 

in (32), and applying the averaging method, we have 

. f / M i Z2=4U/T 
3 7 M 

-\ — k i - S w z 2 . 
1 " 0 / J /i Sea/ 

The trivial solution of (37) is unstable if 

(37) 

( ( 5 ^ _ & i l -
V ley , 

or, to0(/ t) , 

37 2 ^ t 

8W12 

372-4i 

8>Wi2 

y0 / V 1 

-^-)<o, (38) 

orbit of period 2 

satidte-node 

Fig. 4 Period doubling bifurcations, stable orbits; unstable 
orbits: (a) supercritical and (b) subcritical, following saddle bifurcation 
of orbits of period 2 

Wf> 
C 4X?(2y,)3/2 

UW(2y'i)-72 }•&[©'-«]'•<**)• 
(39) 

where we used (28) and (35). The condition (39) represents the 
instability region for the orbit (Ji(t), 0 , ( 0 ) of (19). 
Analogously, we obtain the instability region for (J}(t), 
03 ( 0 ) . to0(/z), as follows: 

, 2 r i r / >, \ 2 i 2 
(W3)2> 

l7[X2(2y3)-72] } & [ ( * ) - * ] •<*•>•}• 
(40) 

Figure 3 shows these unstable regions of (J,(t), <£,(0)> ' = 1» 
3, wi tha = 2, 7=1 .5 , 0 = 3 and <̂5co = 0.O5. In the figure both 
regions are labeled by / = 1, 3. 

It also follows from this analysis that in the unstable regions 
(39) and (40), the harmonic components of frequency v0/2 
grow and, consequently, 1/2 subharmonic orbits of (19) exist. 
This suggests that a period doubling bifurcation occurs when (3 
is increased while v0 is fixed near 2X;, /= 1 or 3. The period 
doubling bifurcation, however, is not necessarily supercritical 
as in Fig. 4(a); it may be subcritical, following saddle-node 
bifurcations at which stable and unstable orbits of period-2 
are created, as in Fig. 4(b). 

3.2 Invariant Tori. We now turn to the Poincare map Fe„ 
associated with (2). Using the transformations (3) and (18), in
variant tori ofF are obtained as follows: 

Ti={(xi(T),yj(T),T)\T^S1))+0(e), / = l , 2 , 3 , (41) 

where 

Xj(T) =y/2Ji(T/v0)COS4>i(T/v0), 

y:(T) = -oyJ2Ji(T/v0)sm<t>i(T/v0), i= 1, 2, 3. (42) 
Stability types of invariant tori 7,- are the same as (Jt(t), 
</>;(0). ' = 1 , 2 , 3. We also note that, corresponding to a 
period doubling bifurcation in the averaged system (19), a 
doubling of torus (cf., Kaneko, 1986) occurs when Tx or T3 

becomes unstable. 

4 Chaotic Motions 

4.1 Melnlkov's Method. For two-dimensional periodic 
systems, Melnikov (1963) has developed a global perturbation 
technique which provides a criterion for the existence of 
chaotic orbits in specific systems. We first review the 
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Fig. 5 Unperturbed structure 

Melnikov technique. For details see Greenspan and Holmes 
(1983), and Guckenheimer and Holmes (1983). 

Consider the systems of the form 

x = f(x) + eg(x, / ) , x = <=R2, 0 < e « l , (43) 

where f:R2--R2, g:R3 —R2 are sufficiently smooth and g(x, t) 
is f-periodic in /. We make the following assumptions: 

(Al) For 6 = 0, (43) reduces to a planar Hamiltonian system 
with Hamiltonian i / ( « , v): 

u=fi(u, v) = m . v=fi(u, v) 
dH 

(44) 
dv du 

(A2) The Hamiltonian system (44) possesses a homoclinic 
orbit q 0 (O to a hyperbolic saddle point p0 . We set 
r 0 = ( q 0 ( O l ' € R ) U [ p 0 ) . ( S e e F i g . 5). 

Since g is 2Tr-periodic, we suspend the system (43) over the 
space R 2 x S ' : 

ir=f(x) + eg(x,0), 0 = 1 , (x, 0 )€R 2 X5' , (45) 

where Sl = R/7'is the circle of length f. Then we have a Poin-
ire map Pe ° defined on a global cross-sect ion 
0 = [ (x, 0) 10 = /„) CR2 x S1. Specifically, P[° is obtained by 

ca 

P,°:x(/0)-x(/0 + f). 
It follows from assumption (A2) that the unperturbed Poin-

care map P0 ° has a hyperbolic fixed point p0 and that there 
exist stable and unstable manifolds W* (p0) and W'(Po) °f 
p0 , respectively, defined as 

W"(p0)=(x€£'0 l( JPo°)"x-p0 as « - + ooj, 

W u (p 0 )=(x€£ ' 0 l (Po 0 ) "x -p 0 as / ! - - < » } , (47) 

such that W (p0) D W (p0) = T0. 
For e:>0 sufficiently small, Pe° still has a hyperbolic fixed 

point pe° = p0 + 0(e) with stable and unstable manifolds 
fP(pe°), H^(pe°) which are close to the stable and unstable 
manifolds ^ ( P o ) , W"(Po) of p0 . As described in Greenspan 
and Holmes (1983) and Guckenheimer and Holmes (1983), the 
distance d(t0) between the manifold ^ ( p , . 0 ) and f^"(pe°) 
(cf., Fig. 6) is measured by 

«/<'.)= " ^ T +0(e2) . (48) 
lf(Qo(0))l 

Here M(t0) is called the Melnikov function and given by the 
simple formula 

M(t0) - s : m0(t))Ag(q0(t),t + t0)dt, (49) 

where the wedge product is defined by aAb = aib2-a2b]. 
From (48) we see that if M(ta) has a simple zero at s, i.e., 

M{s)=0,-^-(s)ji0, (50) 

then by the implicit function theorem, d(t0) also has a simple 
zero near s and hence there exist transverse intersections of 
PP(pe°) and ^ ( p ^ 0 ) which yield transverse homoclinic or
bits. The existence of such orbits implies that Pe° has an in-

W(pto) 

<Wo) 

f(q (0)) 
0 

Fig. 6 Perturbed manifolds and the distance function 

variant Cantor set A; the dynamics of Pe° restricted to A is 
conjugate to that of Smale's horseshoe, so that A contains a 
countable set of periodic orbits of arbitrarily long periods, an 
uncountable set of bounded nonperiodic ("chaotic") orbits 
and a dense orbit (cf., Guckenheimer and Holmes, 1983). 

4.2 Chaos in the Averaged System. We apply the 
Melnikov method to the averaged equation (19) in which /x 
plays a role of e. The Melnikov functions for V ± become 

M± (t0)= j _ a _ [[-7V2/±(0sin</>± (t)]-f3cosv0(t + t0) 

- [ - 0 + - | - « • / ! ( / ) - 7 ^ ^ - ° ][-2&o.7±(0]]<ft. (51) 

Substituting (24) into (51) and evaluating the integral by the 
method of residues, we have 

87ri8j'osinh(4co0o/3pa) 
M+Uo) = 

(46) M_Uo)=~ 

3asinh(4v0/3pa) 

165co / 9 

3a \ 8 

8ir/3i<osmh(4vo0o/3pa) 

3asinh(4y0/3pa) 

165co 

smvnt. o'o 

(52fl) 

smvnt, o'o 

+ 3a 
(n[7r-0o]+ — p a ) , (52b) 

where 0o = arccos [ ( r + + r _ ) / ( r + — / • _ ) ] and p=V — r+r 
Note that 0O and p depend only on a, 7, and Q. 

We define 

I8Q0O - 9pa I sinh(47ry0/3pa) 
R+ (a. 7. n . "0) 

R- (a, 7, 0, v0) 

4irv0 siah(4dQp0/3pa) 

l8Q(7r-0o) + 9pal 

(53a) 

4irv0 

sinh(47rj'0/3pa) 
sinh(4(7r — 0o)»'o/3pa) 

It follows from the Melnikov theory that if 

5co 
>R+(a,y, Q, v0), 

or 

- r - >R-(a, y, Q, v0), 
001 

(536) 

(54a) 

(54b) 

then the averaged system (19) has transverse homoclinic orbits 
resulting in chaotic dynamics. 

In Fig. 7 we show the homoclinic bifurcation curves 
P/8o=R±(a, 7, ft, c0) with a = 2, 7=1 .5 , and 0 = 3. In this 
case three types of chaotic motions are expected. In the region 
fi/doo>R+, there exist motions which swing back and forth 
through <p = ir toward 0 > -K and 0 < 7r in an irregular manner. 
In the region [5/bw>R_, there exist motions which erratically 
rotate in the ^-direction, roughly along T_. In the region 
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0.6 

Fig. 7 Homoclinic bifurcation curves, a = 2, y = 1.5, S) = 3 

Fig. 8 Normally hyperbolic invariant sets 

where /3/&o>i?+ and (3/Sw>R_, besides these two types of 
chaotic motions, there exist motions which swing through 
</> = ir and rotate approximately by 27r in the </>-direction in ar
bitrary orders. 

4.3 Chaos in the Weakly Nonlinear Oscillator. We next 
describe the behavior of the original system (2) by using 
arguments given in Section 5 of Holmes (1986). 

Changing time variable t^tvt, the averaged system (10) is 
written as 

x = f(x) + ,xg(x, T), f = l . (55) 
We define a Poincare map P^.t^t, where £= {(x, T) IT = 0) 
€R 2 xS\ such as (46). Suppose that P has transverse 
homoclinic^orbits. Then there exists an invariant Cantor set A 
on which P^ is topologically equivalent to a Smale horseshoe 
map. This implies that the flow of (55) contains a bundle of 
solutions E whose cross-section is the Cantor set A. 

As in Section 2.2, we consider the Poincare maps Peft, PCitL 
associated with (5) and (10). Recall Plifi =PEi/t + 0(e) (see (15)). 
Since the Cantor set S is also a normally hyperbolic invariant 
set of P€ill, it follows from the invariant manifold theorem 
(Hirsch et al., 1977) that P„e has a normally hyperbolic in
variant set S near 2 (see Fig. 8). Hence, for 0<e«^<sC 1, if 
either (54a) or (546) is satisfied, then the Poincare map FC<IK of 
(2) has an invariant set with Cantor-type structure. Using a 
technique similar to Wiggins (1988b), we can show that the 
dynamics of Fejl normal to the r-direction in such an invariant 
set is "Smale-horseshoe-like" and chaotic.2 

In closing this section we remark that the chaotic orbits of 
Smale horseshoe type are essentially unstable. Therefore, only 
transient chaotic motions are expected and almost all orbits 
may converge to stable periodic or quasi-periodic orbits. Thus 
Melnikov analysis doesn't necessarily provide a criterion for 
"observable" chaos. However, as shown by numerical simula
tion in the next section, we can observe chaotic motions of 
Smale horseshoe type if there exists no other attractor (see also 
Greenspan and Holmes, 1983, Section 10.6). 

5 Numerical Simulation 
Numerical integrations of the averaged system (19) and the 

''Recently Wiggins (1988a, 1988b) generalized the Melnikov method to quasi-
periodically forced systems. This technique has been applied to quasi-
periodically forced single-degree-of-freedom systems by Wiggins (1987, 1988a, 
1988b) and Ide and Wiggins (1989). We could have utilized this version of 
Melnikov's method to obtain our results. 

0. 4 

"-) 

0.2 

0.4 0.5 
Fig. 9(a) 

0.6 

-0.5 0 0.5 

Fig. 9(b) 

Fig. 9 Numerically computed Poincare map P of (19), a = 2, 7 = 1.5, 
S! = 3, /tfa> = 0.05, v0 = 3.5: (a) p0 = 0.25, (b) w8 = 0.53, (c) rf = 2.7. Stable 
manifolds are shown by solid lines, unstable manifolds by broken lines. 

original system (1) have been performed using the Runge-
Kutta-Gill method. 

5.1 Averaged System. We first show the numerical 
simulation results for the averaged system (19) for fixed a = 2, 
7= 1.5, 0 = 3, /x5co = 0.05, v0 = 3.5 (X, = 1.75, X3 = 2.85) and «3 
varying.3 These cases correspond to the primary resonance 
PQ-2^ in equation (32). 

In Fig. 9, we show plots of the stable and unstable 
manifolds W (p2,„), W (P2,̂ ) obtained from computations of 
Poincare map P of (19).4 The lower stable and unstable 
manifolds first intersect at ixfi~0.25 and the upper manifolds 
about /^|3«0.53. These value are compared with the 
theoretical values of 0.242 and 0.530 from (53), respectively. 

As fi(3 increases, transverse intersection between H/s(p2iM) 
and W" (P2,,,) occurs and, consequently, a horseshoe map is 
constructed. However, there exist stable periodic points to 
which almost all orbits converge and chaotic motions aren't 
observed until ixfi takes a much higher value. 
_ Figure 10 shows a bifurcation diagram for the Poincare map 
PM. For small ji/3, there exist two stable fixed points p / ( l, /= 1, 
3. As jxfi increases, a pair of period-two points are created near 
pli(l at /t/3 = 0.160, and then p1|(1 becomes unstable at 
H$=* 0.167, while the theoretical value from (39) is about 

Sometimes we couldn't integrate equation (19) numerically because of the 
singular property about /=0 . In such cases we solved (17) numerically and 
changed coordinates from («, v) to (/, 4>) in order to obtain numerical solutions 
of (19). 

Here we set t0 = 0 and abbreviate the superscript r0 of i> . We also used the 
index theory of Poincare1 (cf., Coddington and Levinson, 1955, Chapter 16) to 
obtain the unstable fixed point p2]/1, as in Hsu (1980). 
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Fig. 10 Bifurcation diagram for the Poincare map P , a = 2, Y = 1.5, 
I) = 3, ji5u = 0.05, I'D = 3.5 

Fig. 11 Numerically computed orbits of the Poincare map P , a = 2, 
•y = 1.5, (1 = 3, n&u = 0.05, >•() = 3.5, jt/S = 2.7 

0.168. This suggests that saddle node and period doubling 
bifurcations occur at these values of /t/3, as in Fig. 4(b). As p/3 
continues to increase, a sequence of period doubling bifurca
tions occurs and accumulates to chaos at nfi ~ 0.9970 (orbits of 
periods 2", «<6, were observed). At /i/3 = 0.9972 the chaotic 
attractor suddenly disappears, and almost all orbits seem to 
the asymptotic to p3i/1. The fixed point p3 , which is stable for 
a wide range of /x/3 value, undergoes a period doubling bifur
cation at fi/3 = 2.543. Further period doublings, however, can
not be observed and chaotic motions suddenly appear at 
w3 = 2.66. Such interruption of period doubling cascades in 
plane maps was indicated in Holmes and Whitley (1984). 
Grebogi et al. (1983) also described phenomena of sudden 
changes in chaotic states, which they called "crises." 

The "strange attractor" of Poincare map P^ at /i/3 = 2.7 is 
shown in Fig. 11, which should be compared with Fig. 9(c). 
We observed that this chaotic orbit erratically swings through 
4> = ir and rotations in ^-direction. 

5.2 Weakly Nonlinear Oscillator. We next show the 
results for equation (1) with fixed a = 0.2, 7 = 0.15, co= 1.14, 
P = 0.1535, 5 = 0.004386, and $ varying. These results corre
spond to the above results for the averaged system (19) if we 
set e = 0.1. 

Figure 12 shows projections of the computed orbits of the 
Poincare map F associated with (1) onto (x, ^)-plane. For 
small $, there exist two stable invariant tori T„ /=1 , 3, as 
shown in Fig. 12(a), (b), in which the theoretical results 
given in Section 3.2 are also plotted as the dashed lines for the 
purpose of comparison. When /3 increases, an invariant torus, 
such as shown in Fig. 12(c), appears near the torus Tx at 
/3« 0.0119 and then T, becomes unstable at 0 = 0.0169; a 
doubling of torus occurs as predicted in Section 3.2. 

Although it follows from the analysis in Section 4 that 
chaotic orbits appear at $ = 0.0242 or /3 = 0.0530, chaotic mo
tions cannot be observed near these parameter values. When $ 
increases past about 0.0617, the doubling cascade of torus oc
curs (three doublings of torus were observed, see also Fig. 
12(d)), and chaotic motions appear at /3 = 0.06707 while the 
chaotic attractor vanishes at $~0.06713. T3 seems to be the 
only attractor for 0.06713 5 (3 50.3308 and undergoes a 
doubling of torus at $ * 0.3308. (See Fig. 12(e).) The new in
variant torus becomes unstable at /3 = 0.3315 and chaotic mo
tions appear suddenly. The chaotic attractor at /3 = 0.34 is 
shown in Fig. 12(/). 

0.05 

0 

(a) 

11 

: I 
-. t \\ w 

-

II ;/ 

-0.65 -0.60 x 

Fig. 12(a) 

0.2 
<b>-

- / / 
1 
1 
1 
1 

\ \ \ \ \ s 

:' \\ 
'• A 

'• 1 

/ 

0.3 

-0.3 

0.3 

1.60 1.65 

Fig. 12(b) 

o-

-0.3, 

(d) 

-

-

. • . 

T i \ 
J • 

-

-0.8 

Fig. 12(d) 

-0.4 

2 

0 

2 

(e) 

c ^ \ " 
^ i 

<£y : 
Fig. 12(e) 

Fig. 12(f) 

Fig. 12 Numerically computed orbits of the Poincare map of (1) onto (x, 
y)-plane, 6 = 0.2, y = 0.15, M = 1.14, P = 0.1535, £ = 0.004386: (a), (b) 
/3 = 0.008; (c) 0 = 0.05; (d) $ = 0.065; (e) $ = 0.331; (f) $ = 0.34. In (a) and (b) 
the theoretical results are also plotted as dashed lines. 
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Fig. 13 Double Poincare section, a = 0.2, 7 = 0.15, u> = 1.14, /3 = 0.34, 
t = 0.1535, 6 = 0.004386 

Fig. 14 Strange attractor in the averaged system (17), <x = 2, 7 = 1.5, 
Si = 3, fiSa = 0.05, K0 = 3.5, JJ/S = 2.7 (w = 1.14) 

Figure 13 shows the double Poincare section (Moon and 
Holmes, 1985; Moon, 1987) for the chaotic attractor in Fig. 
12(f). In order to draw this figure, we took the thin section 
0<T<0.02TT and projected points falling in this slice onto x-y 
plane. Thus, the chaotic attractor in Fig. 12(/) has a fractal 
structure similar to that for the averaged system in Fig. 14, 
which is produced by changing coordinates from (/, <t>) to (u, 
v) and applying the transformation (3) at t = 0 (y = u, 
y= —wv) in Fig. 9(c). This observation indicates that the ex
istence of transverse homoclinic orbits in the averaged system 
is responsible for chaotic dynamics of the original system, as 
described in Section 4.3. 

In Fig. 15 we show numerical solutions x(t). Figure 15(a) 
and (b) display the quasi-periodic orbits corresponding to two 
invariant tori of Poincare map F at /3 = 0.05; one is T3 and the 
other shown in Fig. 12(c). After a doubling of torus, the new 
beating motions have twice as long beating periods as the 
previous one, see Fig. 15(6). The chaotic orbit at 0 = 0.34 is 
also shown in Fig. 15(c). 

6 Conclusions 
In this paper we have studied the dynamics of a weakly 

nonlinear single-degree-of-freedom system subjected to com
bined parametric and external excitation. By using the averag
ing method, the invariant tori and their stability were analyz
ed. The orbits on these invariant tori indicate quasi-periodic 
motions. Furthermore, we applied the Melnikov technique to 
the averaged equation and utilized the invariant manifold 
theory to predict the regions in parameter space where chaotic 
orbits may exist. 

In numerical simulation the existence of invariant tori and 
chaos was confirmed. We also observed doublings of torus, 
which correspond to period-doubling bifurcations in the 
averaged system. In some cases such bifurcations seem to suc
ceed infinitely and accumulate to chaos, and in other cases 
chaotic attractors appear after a finite number of doublings. 

Our results demonstrate the validity of the averaging 
method combined with the Melnikov technique to prove the 
existence of chaos in weakly nonlinear systems, together with 
the work of Holmes (1986) who analyzed a two-degree-of-
freedom system subjected to periodic excitation. The ap-

Fig. 15 Numerical solutions of (1), a = 0.2, 7 = 0.15, u=1.14, v = 0.1535, 
S = 0.004386: (a), (b) $ = 0.05, (c) $ = 0.34 

proach used here is also applicable to a wide class of quasi-
periodically forced weakly nonlinear oscillators. In the subse
quent work we will pursue the chaotic dynamics of such 
systems. 
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Spectral Moments and 
Pre-Envelope Covariances of 
Nonseparable Processes 
A critical review of the definition of the spectral moments of a stochastic process in 
the nonstationary case is presented. An adequate time-domain representation of the 
spectral moments in the stationary case is first established, showing that the spectral 
moments are related to the variances of the stationary analytical pre-envelope pro
cesses. The extension to the nonstationary case is made in the time domain 
evaluating the covariances of the nonstationary pre-envelope showing the dif
ferences between the proposed definition and the classical one made introducing the 
evolutionary power. 

1 Introduction 

Many time-varying loadings to structures are modeled as 
stochastic processes and the response analysis can be estab
lished in a probabilistic sense. The stochastic processes of in
put and response may often be nonstationary for frequency 
content and amplitude, as in the case of a strong motion phase 
during an earthquake (Kameda, 1975) and can be adequately 
represented as nonseparable processes (Priestley, 1965). 

For Gaussian inputs and linear systems, the first and the 
second-order moments completely define the statistics of the 
response. However, in many cases such as prediction of the 
first excursion failure, fatigue failure, etc., we are concerned 
with the statistics of the envelope process. The above, follow
ing Dugundji (1958) and Yang (1972), and Krenk et al. (1983), 
for stationary and nonstationary processes, respectively, can 
be seen as the modulus of the pre-envelope (Arens, 1957; 
Dugundji, 1958); i.e., a complex process, the real part of 
which is the given process while its imaginary part is related to 
the real one in such a way that the complex process exhibits 
power only in the positive frequency range. It follows that the 
statistics of the envelope are related to the covariances of the 
pre-envelope. 

It has been shown (Di Paola, 1985) that the covariances of 
the pre-envelope are, in the stationary cases, strictly related to 
the so-called spectral moments SM (hereafter referred to as 
SM) (Vanmarcke, 1972). In particular, the SM, defined as the 
moments of the one-sided power spectral density function 
have, in time domain, the meaning of variances of the pre-
envelope (Di Paola, 1985). 

The extension of the SM to the nonstationary case is usually 
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made in the frequency domain as the moments of the one
sided evolutionary power spectral density (Priestley, 1965; 
Hammond 1968; Shinozuka, 1970). However, such definition, 
with exception of the zeroth one SM, has no physical meaning 
in the time domain and enjoyment of unsatisfactory proper
ties, for example, in the transient case of an oscillator sub
jected to white noise input (see Corotis, 1972). 

Here a comparison between the SM in the nonstationary 
case and the pre-envelope covariances (PEC) is presented. In 
particular, it is shown that only the area of the evolutionary 
power coincides with the PEC, while all other moments differ 
from the variances of the various derivatives of the pre-
envelope and, as a consequence, the moments of the evolu
tionary power do not give any information on the statistics of 
the envelope. 

The PEC for a multi-degree-of-freedom linear system sub
jected to nonstationary, nonseparable processes is also 
presented, and the numerical aspect on their evaluation is 
discussed in the application. 

For clarity's sake, in the next two sections the complex 
representation of pre-envelope processes is first discussed. 

2 Stationary Pre-Envelope Process 

Let F(0 be an ^-dimensional real stationary stochastic pro
cess vector given in the Priestley (1965) representation as 
follows: 

F(0 = {
OO ft OO 

e-l"<dZ(u)=\ e'wtfZ*(a>). 
— 00 J — 00 

(1) 

/' is the imaginary unit (i = V - 1), while the asterisk indicates 
the complex conjugate and cfZ(co) is a stochastic vector process 
having orthogonal increments, i.e., 

E[dZ{p}i)dZ*T{w1)] =5(co2-co1)^(w1) (2) 

whereE['} means stochastic average, b(f) is the Dirac's delta, 
the superimposed T means transpose, and d\//(ui) is a deter
ministic Hermitian positive-definite matrix. It is worth noting 
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that in order for equation (1) to be fulfilled, it is necessary that 
the process vector dZ(oi) be complex, such that its real and im
aginary parts are even and odd functions of 01, respectively. 

Without loss of generality we consider that ¥(t) is a zero-
mean process and (̂co) is a differentiable matrix, and hence, 
the following relationship 

cty(o)) = G{co)do> (3) 

holds, G(o)) being the Hermitian power spectral density func
tion matrix defined in both the positive and negative frequen
cy ranges. 

Let us consider a new .process vector t(t), derived from F(/), 
such that the corresponding power spectral density function 
matrix G(u) is one-sided, i.e., 

G(o>) = 2 {/(co)G(w) = S(«o), (4) 

U(oi) being the unit step function. Equation (4) is verified if 
the vector rfZ(w), corresponding to F(co), takes on the follow
ing form: 

1 2 
rfZ(co) = - W l + sgn(co))e?Z(co) = -f=-U(o>)dZ(o>) (5) 

sgn(co) being the signum function. Equation (2), rewritten for 
the stochastic process vector Z(o>), now gives: 

£,[crZ(«1)c/Z*7'(w2)]=2C/(a)1)^(w,)5(w2-co1) 

= S(co1)e?co15(u2 — coj). (6) 

_ Using equation (5), the appropriate description of the vector 
F(/) takes on the form: 

F(0= \_a e-**d2(«) = - ^ j V**dZ(«). (7) 

This equation shows that F(/) is a complex vector having fre
quency content only in the positive frequency range, and it can 
easily be seen that its real part is proportional to the real pro
cess F(0 defined in equation (1), while its imaginary part is the 
signumless Hilbert Transform of the real one, i.e., f(t) con
stitute an analytic process (Papoulis 1965, Nigam 1982), and is 
the so-called "pre-envelope" (Arens, 1957; Dugundji, 1958). 

fW = 7J<F(0-'"F(0) (8) 

where the accent means Hilbert Transform: 

1 f00 F(p) 
F(0 = — -~dp- (9) 

T J - « t—p 

In the stationary case the vector t(t) can be written in the form 

i oo 

e~ia'sgii(w)dZ(o>). (10) 
— 00 

It is worth noting that the modulus of the y'th entry of the 
complex process vector defined in equation (8) is proportional 
to the "envelope" of Fj(t). 

The cross-correlation function matrix of the complex vector 
F(0 is given in the form: 

Rrr(T) = E[f(t)f*T(t + T)] = \°°e^S(.u)du. (11) 
Jo 

From this equation it can easily be shown that the cross-
correlation matrix of the vector f(t) is complex and such that 
its real part is the cross-correlation function of the real vector 
F(/) while its imaginary part is the Hilbert Transform of the 
real one, i.e., 

R»( r ) = RFF(T) + iRn,(T). (12) 

The real and the imaginary parts of the cross-correlation func
tion matrix can be rewritten in equivalent forms as follows: 

RFFW = R F F M = - RFF(T) = [°° 6"'<-'G(co)cta (13) 
J — oo 

( oo 

e'wsgn(a>)G(io)tfu. (14) 
— GO 

As a conclusion the process vector F(?) having the represen
tation given in equation (8) exhibits power only in the positive 
frequency range and has the complex cross-correlation func
tion defined in equation (12). 

3 Nonstationary Pre-Envelope Process 

Let F(0 be a real nonstationary nonseparable stochastic 
process vector. Following Priestley, its representation is given 
in the form: 

F(0= f e-'u 'A(u, t)dZ(o>) = \ e'wA*(co, t)dZ*(a) (15) 
J —OO J - 00 

where A(co, /) is a slowly time-varying deterministic function 
matrix and dZ(io) is the stochastic process vector already 
defined in equation (2). As for the stationary case, due to the 
fact that the process ¥(t) is real, the real and the imaginary 
parts of the vector A(co, /) rfZ(co) must be even and odd func
tions of to, respectively. 

The complex representation of the nonstationary process 
vector can be obtained by inserting the process vector dZ(u>) 
defined in equation (5) into equation (15), thus obtaining: 

i oo *} r* oo 

e-'a'A(u, t)dZ(o)) = -i=\ e-/w'A(w, OrfZ(co). 
-oo V2 Jo 

(16) 
This equation shows that the nonstationary vector process 

F(?) is a complex vector having frequency content only in the 
positive frequency range, and it can easily be seen that its real 
part is proportional to the real vector process F(0 defined in 
equation (15), while its imaginary part will be denoted as 
-F( / ) . Hence, we can write: 

F(0 = ^ ( F ( 0 " * ( 0 ) (17) 

It is to be emphasized that t(t) coincides with F(0 only in 
the stationary case, while in the nonstationary case it is given 
as 

t(t) = i\ e-'wsgn(o))A(<o, t)dZ(a>). (18) 

The modulus of the y'th entry of the vector F(0 in equation 
(17) is proportional to the envelope function of Fj{t) defined 
by Yang (1972). The complex cross-correlation function 
matrix of the complex vector f(t) can be written as follows: 

RFF(/1 ,/2) = JB[F(?1)F*r(/2)] 

i oo 

e'wA(a), t1)S(o>)A*T(w, t2)du (19) 

in which T = t2 — tx. 

The real and the imaginary parts of the correlation matrix 
RFFCI > h) c a n b e rewritten in equivalent forms as follows: 

RFFCI> h) = R » ( ' i . h) = \ e,wA(o>, ti)G(u)A*T(u, t2)dw 
J — oo 

(20) 
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*Mti,t2)=-RMti,t1) 

!

00 

o sgn(o>)e,wA(o), tl)G(o>)A*r(u, t2)du. (21) 

Using equations (20) and (21), the correlation function matrix 
Rffff(*i> '2) c a n be rewritten in the form: 

RM(f,, t2) = R„(f,, t2) + /RFF(/,. '2)- (22) 

In the next section it will be shown that the complex 
representation of the vector f(t) given in equations (7) and 
(16) for the stationary and nonstationary case, respectively, 
are essential not only for the definition of the envelopes, but 
also for the correct definition of the spectral moments (Van-
marcke 1972) in both stationary and nonstationary cases. (See 
also Di Paola 1985.) 

4 Spectral Moments and Pre-Envelope Covariances, 
Stationary Case 

In this section the covariances of the stationary process 
defined in equation (8) are presented. In order to do this, let 
P(0 the 2n dimensional vector of the state variables, be in
troduced as follows: 

P r ( 0 = [ F r ( / ) F r ( 0 ] (23) 

where the upper dot means time differentiation and F(/) is the 
stationary process vector given in equation (8). Using the main 
properties of the correlation function given in equations (13) 
and (14) evaluated for T = 0 , the time-independent Hermitian 
cross-covariance matrix of the complex vector P(t), i.e., the 
PEC matrix, is given as: 

LpP=E[P(t)f*T(t)] =E[V(t)PT(t)] +iE[T>WT(t)] 

where P(0 is the real vector of state variables 

VT(t)=[TT(t)tT(t)]. 

Equation (24) shows that the real part of the matrix Epp is 
the traditional covariance matrix of the real process vector 
P(0, while the imaginary part is the cross-covariance between 
the real vector P(0 and its Hilbert Transform. 

The matrix Epp can be rewritten in an extended form as 
follows 

(24) 

Lpp — 

E[t(t)t*T(t)] E[f(t)t*T(t)] 

E[f(tW*r(t)] E[f(t)t*T(t)] 

(26) 

In previous papers (Borino et al., 1988; Muscolino, 1988), 
this matrix has been called, in a less appropriate manner, 
cross-covariance spectral matrix (CCS matrix). 

Using equation (7) to represent the stochastic vector F(0, 
after some simple algebra it can easily be seen that the various 
block matrices of the matrix £pp take on the form: 

E[f(t)f*T(t)] = f S(«)d< rco = A, 0, FF 

E[$(t)i*T(t)} =i[ o>S(o>)do> = iA1 FF Jo 

E[f(t)i*T(t)] = f°°co2S(o>)Ao = A2 FF. 
Jo 

(27) 

(28) 

(29) 

Equations (27)-(29) show that the PEC matrix is related to the 
moments of the one-sided power spectral matrix S(u), i.e., to 
the so-called SM (Vanmarcke, 1972). 

Inserting equation (27)-(29) in (26), the frequency domain 
representation of the PEC matrix is given as: 

Zipp — 

1 S(w)du i\ oiS(oi)do: 
Jo Jo 

1 00 p 0) 

wS*(<o)rfu a)2S(u)doi 
0 Jo 

(30) 

Comparing equations (24) and (30), the important connec
tion between the SM and the PEC is evidenced. 

The presence of the imaginary unit in the out-of-diagonal 
block matrices in equation (30) inverts the roles of the real and 
imaginary parts of the first spectral moment, with respect to 
the cross-covariance E[$(t) F ( 0 ] . 

It is interesting to note that the PEC matrix particularized 
for the vector F(0, having only one component, is such that its 
determinant is related to the bandwidth parameter (Van
marcke, 1972). 

5 Spectral Moments and Pre-Envelope Covariances, 
Nonstationary Case 

The SM in the nonstationary case are defined in the 
literature as the moments of the so-called one-sided evolu
tionary spectral density (Shinozuka, 1970): 

S(w, 0 = A(w, 0S(OJ)A*7'(60, 0 (31) 

and the extension of the time-dependent SM is usually made in 
the form (Corotis et a l , 1972): 

oa>S(u,t)do> j^O. (32) 

Using the main properties of the correlation function given 
in equations (21) and (22), particularized for tl=t2 = t, it can 
easily be seen that fory'=0, equation (32) gives: 

A0 ,FF(0= (°°S(co, Odw = £[F(0F* r(O] 
Jo 

= £ [ F ( 0 F r ( 0 ] +iE[¥(t)tT(t)]. (33) 

This equation shows that the zeroth coincides with the 
covariance of the complex process defined in equation (17), 
while for j greater than zero, the moments of the one-sided 
evolutionary power spectral density function matrix has no 
analogous correspondence in the time domain of the variance 
of the pre-envelope processes, as in the stationary case. 

The time-dependent PEC matrix is given in the form: 

EM(0 = £[P(0P*7 ' (f l] . (34) 

where P(0 is defined in equation (23) and while F(0 is defined 
in equation (17). The block matrices of Epp(0 are given in 
equation (26), the first block matrix has already been defined 
in equation (33), while the other blocks can be written in the 
form: 

E[f(t)tT(t)] =E[¥(t)FT(t)] +iE[¥(t)tT(t)] (35) 

£[F(/)F* r(0] =£[F( / )F r (0 ] +iE[F(t)tT«)]. (36) 

Using equation (16) to represent the nonstationary vector F(/), 
and writing its time differentiation in the form 

i 2 f " 
"A-,(w, t)dZ(o>) (37) 

where 
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A,(o, 0 = - i'«A(u, 0 + A(w, 0, 

equations (37) and (38) can be rewritten as 

E[f(t)f*T(t)] = [ A(w, 0S(a))A1*
r(o>, Orfw 

Jo 

£ [ j ( 0 f * r ( 0 ] = ( A,(w, OS(w)A1*
r(a>)' Orfw 

Jo 

or, in an explicit form 

£[F(OF* r(0] =M wS(u, fyfo + S,(co, Orfw 

(38) 

(39) 

(40) 

(41) 

E[nt)rT(t)] (
CO 

o " 2 S(co, 0^w 

!
00 /•CO 

[wS,(«, 0-Sf(w, /)]dco+ S2(u,t)da 
o Jo 

where 

S,(w, /) = A(co, OS(a))A*r(co, 0; 

S2(a>, 0 = A(co, OS(co)A*r(co, 0-

(42) 

(43) 

Equations (41) and (42) show that the variances of the 
nonstationary pre-envelope processes t(t) and F(0 can be con
structed adding to the moments of the one-sided evolutionary 
spectrum other quantities involving the time derivatives of the 
function matrix A(w, t). Only when A(o>, /) is a smooth func
tion matrix varying very slowly in t, A(co, t) is approximately 
equal to zero, is the cross-covariances of the pre-envelope pro
cesses proportional to the time-dependent spectral moments 
defined in equation (32). (See also To, 1986.) On the other 
hand, when comparing equation (27)-(29) with equations (33), 
(41), and (42), it seems to be more reasonable to evaluate the 
covariances of the pre-envelope in the nonstationary case, in 
the time domain, i.e., defining the time-dependent PEC as the 
covariances of the nonstationary complex processes F(/) and 
F(/) 

A0]FF(?) = £[F(0F* r( / ) ] (44) 

/A1|FF(0 = £ [F(0F* r (0 ] (45) 

A2 ] F F(/)=£[F(0F* r(7)] . (46) 

Using these quantities instead of the moments of the evolu
tionary power, some quantities of engineering interest, such as 
the probability density function of the envelope and the mean-
rate threshold crossing of the given barrier, can be computed 
in an exact manner (Di Paola and Muscolino, 1987; 
Muscolino, 1988), while only approximate expression can be 
obtained using covariances of the real processes or the 
moments of the evolutionary power. 

6 Input-Output Relationships 

The equation of motion of an /7-degree-of-freedom linear 
structural system is governed by the following equation: 

MX + CX + KX = F(0 (47) 

where, M, C, and K are the inertia damping and stiffness 
matrices, respectively, X(t) is the vector of displacements. F(0' 
is the forcing function vector. The vector solution X(t) can be 
obtained in the form: 

X ( 0 = ( ! H ( r 
Jo 

T)F(T)C?T + G(0KU0 + H(/)MX0 (48) 

G(0 = H(0, (49) 

and X0, X0 are the vectors of initial conditions. 
For greater convenience, let the state vector 

UT(t)=[XT(t)XT(t)] (50) 

be introduced, then the vector solution X(t) is written in the 
form 

U(0 = W(0 U0 + f Ut - T)¥(T)CIT (51) 

in which we have set 

0(0 = 
G(0K H(0M 

G(0K H(0M 
; L(0 

H(/) 

H(0 
Un 

(52) 

Equation (51) is able to give the state vector solution, U(0, 
in the deterministic case. The vector U(/) is either real or com
plex depending on whether the forcing vector is real or com
plex. In order to evaluate the PEC of the vector solution U(0, 
the forcing vector F(?) must be defined as in equation (8) or 
(17) in the stationary or nonstationary case, respectively. 

6.1 P.E.C. Matrix of the Output-Stationary Case. Par
ticularizing the equation (51) for stationary condition and 
complex forcing function defined as in equation (8), we obtain 
the stationary response of the state vector in the form 

C«=i-, L(/-T)F(T)G?T 

00 [f Ht-T)e-i»TdT]dZ{o>). (53) 
0 J - o o V2J 

After some easy manipulations, the latter can be rewritten in 
the form 

U(0 = 
2 r 
VlJo 

e-''""L*(co)tfZ(co) (54) 

in which L(a>) is the Fourier Transform of L(0. From this 
equation it can easily be seen that \J{t) is a complex process 
such that its imaginary part is the (signumless) Hilbert 
transform of the corresponding real one, i.e., 

U(0 = - ^ [ U ( 0 - ' U W ] - (55) 

The PEC matrix of the vector X, according to equation 
(24), is given in the form: 

E c c = £ [ U ( 0 U * r ( 0 ] = 
•̂ o, xx 

- /Af v . 

/A 1, XX 
(56) 

in which the various block matrices can be written as 

A0|XX =E[X(t)X*T(t)] = \'*H*(w)S(a>)llT(a)dw (57) 

'A,,xx = £ [ X ( 0 X * r ( 0 ] = -/[°°ooH*(a))S(a))H
r(co)rfu (58) 

A2,xx =E[X(t)X*T(f)] = j"co2H*(a))S(a))H7'(co)rfco. (59) 

H(0 being the impulse response function matrix, G(0 is The latter equations give, in compact form, all the envelope 
related to the matrix H(0 in the form: covariances of the nodal response in the stationary case, show-
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— v w w — 

x, <t> 

V/
M>/\—WW-

X? (t) 

Fit) 

Fig. 1 The lwo-degrees-of-freedom system 

ing the perfect correspondence with the pe-envelope 
covariances of the response process. 

6.2 P.E.C. Matrix of the Output-Nonstationary Case. In 
order to obtain the PEC matrix of the output in the nonsta-
tionary case, the forcing function vector in equation (51) must 
be defined as in equation (17), it follows that the vector solu
tion is given in the form 

U(O = 0(OUO+ L(/-r)F(T)rfT = 
Jo 

/^~\ 
/ \ / s 

/ s 

1 / 
1 s 1 s 

. ^ 
„ " ' ^ x 

- 1 _ , , l " * " " l mi t ( i . . . . . 

= 0 ( 0 U o + - ^ - ] o r w N ' ( « , t)dZ{u) 

in which we have set 

N(o>,f)= ( L ( ? - T ) A ( W , t)e-W-*dT 
Jo 

(60) 

(61) 
Fig. 2(c) 

and U0 is the complex vector of initial conditions given as 

2 
K 16 20 t 

U o = 7 j ( U o - / U 0 ) (62) 

in which U0 has the same probability distribution as U0 . 
The time-dependent PEC matrix of the vector U(/) is given 

in the form 

L c c ( 0 = f N*(W) 0S(w)NT(w, t)du 

+ 0(OEcc(O)0r(O + Q(0 + Q* r ( 0 (63) 
in which Scc(°) is the PEC matrix evaluated at time / = 0, and 
Q(0 is the complex matrix given in the form 

Q(/) = 0(0 [' E[V0t
T(T)]LT(t-T)dT. (64) 

Jo 
For deterministic zero-start conditions, the PEC matrix is 

given in the simpler form 

£ c c(f) = j"N*(a), 0S(«)Nr(w, t)dw 

in which the various block matrices are given as 

{
oo 

o R0*(o>, 0S(co)Ro
r(M> t)dw 

«Ai,xx(0= j 0 Ro(«. 0S(«)Rf>, Oda 

A2,xx(0= J " R * ( « . OS(«)Rr(«, Qdu 

and 

R0(w, f ) = l H ( / - T ) A ( O , t)e-'"TdT 

R1(w,t)=[ H(t~T)A(u,t)e-imdT. 
Jo 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

Fig. 2(d) 
Fig. 2 Modal pre-envelope covariances: (a) dashed line E[Y-| ?}] full 
line 40 E[f2 YJ], (b) dashed line £[?., Yf], full line AE[?2 Y|], (c) dashed 
line Re E(El?i *i l). full line 4 Re(E[V2 *2l). (<*) dashed line lm(£[y1 YJ]) 

Evaluating for each frequency the integrals in equations (69) 
and (70) and substituting the latter in equations (66)-(68), the 
various block matrices of £oo(0 c a n ^ e computed. 

7 Numerical Example 

As an application, a two-degree-of-freedom, classically 
damped system depicted in Fig. 1 has been analyzed. In this 
case the vector solution X can be evaluated by means of the 
mode superposition as follows: 

X = <j>\ (71) 

where <t> is the modal matrix normalized with respect to M, and 
Y is the vector solution of the decoupled modal differential 
equations. The examinated system is characterized by the 
following data 

M, = M2 = 1 kg; K{ = 50 New/cm; K2 = 33 New/cm. 

The modal analysis provided the following results: 
Natural radian frequencies: c^ =3.76 rad/s; co2 = 10.93 rad/s 

Modal Matrix: <*> = 
0.811 0.585 

0.585 -0.811 

the damping ratio, here assumed equal for both modes, is 
£ = 0.05. The input process is defined as in equation (16), in 
which A(u, f) is given in the form (Spanos, 1983): 

A{(J>, f) = V8exp(——bt)texp(——/3(«)A; 0 ^ w < o o . (72) 

The process dZ(to) is such that 
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Fig. 3(a) 
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Fig. 3(b) 
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Fig. 3(c) 
Fig. 3 Modal pre-envelope covariances: (a) dashed line lm(£[yi y"|]), 
full line Refer.?! ^ ] ) , (b) dashed line ImfE!?, YJ]), full line R e ^ Y , ?$)), (c) 
dashed line ImfE!^ YJ]), full line RefEI^ Y^]) 

£'[dZ(co1)rfZ(co2)*]=a(co,)5(co2-co1)rfco1 (o)>0). (73) 

The parameters chosen for the analysis are 

6=.15s-1;(3(o)) = a(aj) = (co/5ir)2s-1. (74) 

The spectrum of the input is characterized by a dominant 
frequency decreasing with time from about 5TT rad/sec to 2-w 
rad/sec, and by the fact that its total power initially increases 
with time and then gradually decreases. 

In Fig. 2 the modal covariances of pre-envelope complex 
processes ?,•(/= 1, 2) are plotted. In these figures it can be seen 
that the peaks of the curves of the different modes are located 
at different instants, according to the behavior of the input 
process. It is to be emphasized that if the function A(o>, t) and 
the power spectral density function had been chosen as real 
functions, all the moments of the evolutionary power would 
be real functions, while in the new representa
tion, E[YjYj], i=l,2 are complex functions. 

In Fig. 3 the various modal cross-covariances are plotted, 
while in Fig. 4 the (nodal) covariances of the pre-envelope 
complex process X2(t) (displacements of the second mass) are 
plotted. 

From a practical point of view, the numerical evaluation of 
the nonstationary PEC needs to be conducted in the following 
way: First of all, in a suitable time interval, depending on the 
behavior of the input process, an adequate number of instants 
must be selected. For each instant, the R0(u, t), i?,(u, t) com
plex coefficients given in equation (69), (70) have to be 
evaluated, and an integration over the instantaneous frequen
cy range of the input process for every covariance must be ef
fected according to equations (66)-(68). 

These integrals are difficult to solve analytically, but are not 
affected by particular computational problems, so that the 
most delicate aspect of the numerical problem is the evalua
tion of the R0(u, t) and i?i(co, t) coefficients. If no analytical 
solution of such integrals can be found, for each instant con
sidered and for each coefficient, a different numerical integra-

0.3-

0.1 

0 

/ ^ ^ ^ " ^ 

—*f | r - ) 1 1 1 1 \ -+ —-* ; 
20 t 

1 

0.5 

0.5-

-1 

Fig. 4(a) 

/ 
> ' • , , , ,Nv , , , , 
^ ^ ^ \ " < 8 12 ^~-JJ 20 t 

Fig. A(b) 

Fig. 4 Nodal pre-envelope covariances: (a) dashed line EIX^XJ], 

full line E[X2X2]/10, (b) dashed line 50 Re(E[X2X$]), full time lm(E[X2Xp 

tion from 0 to the current instant must be effected. Such in
tegrals depend essentially on the form of the A(a>, t) input 
function. 

In the present application a closed-form solution was easily 
found, but it is not reported for brevity's sake. 

8 Conclusions and Discussion 

The probabilistic structures of a real Gaussian process is 
fully determined by the first two moments (mean and 
covariance). In some cases of engineering interest, however, 
we are concerned with the statistics of the so-called envelope, 
that is, for narrow band process, a smooth curve joining the 
peaks of the process. Following Dugundji (1958) in the sta
tionary case, and Yang (1972) in the nonstationary case, the 
envelope is defined as the modulus of the pre-envelope, i.e., a 
complex process, the real part of which is the given process, 
while the imaginary part is related to the real ones in such a 
way that the resulting complex process exhibits power only in 
the positive frequency range. In order to obtain the statistics 
of the envelope, the variances of the pre-envelope need to be 
evaluated, rather than the variances of the given real process. 

Here the covariances of such complex process have been 
evaluated, and it is shown that in the stationary case these 
covariances are strictly related to the so-called spectral 
moments. In particular, PEC matrix has been defined, the real 
part of which is the well-known covariance matrix of the real 
process, while its imaginary part contains the lowest imaginary 
part of the even SM, and the real part contains the first odd 
SM. 

Because the statistical characterization of the envelope re
quires both the real and the imaginary parts of the complex 
process, both the real and the imaginary parts of the PEC 
matrix are essential for the evaluation of the peak statistics of 
the real process. 

In order to extend the previous concepts to the nonsta
tionary case, the complex representation of the nonstationary 
processes (introduced by Yang) has been adopted and extend
ed to the vector processes, and the covariances of the pre-
envelope process has been evaluated. The pre-envelope 
covariance coincides with the zeroth-order moment of the 
evolutionary power, while no analogous correspondence can 
be obtained between the higher moments of the evolutionary 
power and the covariances of the derivatives of the pre-
envelope. 

On other hand, remembering that the SM are useful quan
tities for the evaluation of the statistic of the peaks, and the 
latter are related to the moduli of the complex processes, it 
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seems to be more appropriate to evaluate the higher-order 
time-dependent pre-envelope covariances of the various 
derivatives of the nonstationary complex processes, instead of 
the moments of the evolutionary power. 

It is shown that the pre-envelope covariances are given as 
the sum of the traditional higher-order SM obtained as the 
moments of the evolutionary power and other similar quan
tities involving the derivatives of the modulating functions. 

The pre-envelope covariance of a multi-degree-of-freedom 
linear system excited by a nonstationary, nonseparable process 
has been also discussed and the numerical aspects have been 
evidenced by means of a numerical example. 
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The Principle of Asymptotic 
Proportionality 
The Principle of Asymptotic Proportionality, which is based on the Green's func
tion method for equilibrium problems, is proposed. Using this principle, the induced 
far-field variable due to any distribution of applied physical quantities can be ap
proximated. This principle has been verified by considering the induced stresses due 
to applied tractions and dislocations in two-dimensional linear elastic media, and 
has been shown to be applicable to other physical phenomena such as electrostatics, 
gravitation, and electromagnetism. 

Introduction 

The Green's function method has been widely used to solve 
equilibrium problems (for example, see Hildebrand, 1976). 
For a physical system under equilibrium with given boundary 
conditions, the induced field variable (such as stress, 
temperature, and electrostatic potential), due to a unit concen
trated "charge" (such as traction, heat source, and elec
trostatic charge), is given by a Green's function (or influence 
function). Using the Green's function, the resultant induced 
field due to any applied distribution of charges can be found. 
Capitalizing on this method of solution and postulating a 
specific property of the Green's function, the induced field at 
large distances from the location of the applied charges can be 
approximated. 

Starting with the analysis of stress fields induced in a two-
dimensional linear elastic medium by a certain applied traction 
distribution, the Principle of Asymptotic Proportionality 
(PAP) is introduced. Then it will be shown that PAP can also 
be applied to other applied charges, including semi-infinite 
dislocations, electrostatic charges, and heat and fluid flows. 

The Principle of Asymptotic Proportionality 

Consider a two-dimensional linear elastic medium with 
given boundary conditions (Fig. 1). The medium is at 
equilibrium with an arbitrary applied traction distribution (in 
the j-direction), p(x), on a segment of length h on the x-axis. 
The stresses at a certain point P in the medium induced by the 
applied traction, p(x), can be found by using the suitable 
Green's function for the given boundary conditions: 

f 
Jo 

G(x, OP)p{x)dx (1) 
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where F is a certain stress component and G(x, OP) is the cor
responding Green's function. 

Using integration by parts, we have 

F= \G(X,OP)\X p(x)dxY 

-\h
o{\X

oP{X)dx)dG^P) 

dx 
dx 

G(h, OP)\ p(x)dx- \ p(-»(x)GW(x, OP)dx, 
JO JO 

p<~»(x)=\X
oP(x)dx 

where 

and 

G<»(x, OP)-
dG(x, OP) 

dx 

Hence, 

F=G(h, OP)p^i\h)- \ G^,{x, OP)^~1Hx)dx. 

(2) 

(3) 

(4) 

(5) 

Fig. 1 A two-dimensional medium under stress equilibrium 
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Fig. 2 Kelvin's problem for plane strain 

(a) 

I I 
p(x) = 1 

Section B Section A 

(b) 

P(x)-1/2x 

Fig. 3 Two different applied traction distributions 

By applying integration by parts repeatedly to (5), we have 

F=G(h, OP)P<--»(h)-Gm(h, OP)p< 2>(/J) 

+ GV>(h,OP)P*--2\h)-. . . 

+ (~\)mG^m\h,0~P)p^m-l\h) 

+ ( ~ l ) m + 1 \ G(m+1)(x, OP)p<--m-l\x)dx 

(111 = 0 , 1 , 2 , . . . ) , 

where 

pl-i~1\x)= [ p(~'Xx)dx 

G(/+1>(x, OP) = —G®(x, OP) ( /=0, 1 , 2 , . . . ) 
ax 

pl°\x) = p(x), G®\x, OP) = G(x, W>). 

Now if 
p(-D(/z) = jD(-2)(A)= . . . =p(-«(/!) = 0, 

p ( -* -" ( / ! )^0 , (A:= l ,2 ,3 , . . . ) , 

then 

F = ( - 1)*G<*>(A, OP)p<--k-i\h) 

+ ( - 1)*+1 f G<*+1>(x, ~OP)pi-k-i\x)dx. 
Jo 

(7) 

(8) 

(It has been implicitly assumed that G(x, OP) is differentiable 
and p(x) is integrable with respect to x (fc+1) times.) Let 
/•= IO.PI._It is postulated that, with minor exceptions, 
Gik+[)(x, OP) (with 0 < x < / 0 has a lower order of magnitude 
than G(k)(h, OP), when r/h is large. Assume (reasonably) that 
pi~k~i)(x) is finite and bounded. Thus, for large r/h, 

Fs(-\)kG<-k\h, OP)p<--k-l){h). 

LU 
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Fig. 4 Ratio of induced ayyalorig Section A 

Equation (7) can be considered to be a set of conditions 
specifying that kth {k= 1, 2, 3, . . . ) order equilibrium exists 
over the applied traction distribution. When (7) is not 
satisfied, zeroth-order equilibrium (£ = 0) is considered to 
exist. 

The Principle of Asymptotic Proportionality (PAP) is thus 
stated as follows: 

When the applied traction distribution is under the &th-
order equilibrium, with minor exceptions, the induced stresses 
F at a point P far from the region of the applied tractions are 
approximately proportional to the (k+ l)th integral of the ap
plied distribution: 

F=(- \)kGW{h, OP)p<-*-')(/!). (9 repeated) 

(The minor exceptions will be considered later.) 
It should be noted that the aforementioned formulation for 

PAP can be applied to other physical quantities as long as 
linear superposition, as exemplified by (1), holds. Thus PAP 
can be applied to many physical phenomena such as elec
trostatic and magnetic fields, and heat and fluid flows. 

(6) Kelvin's Problem For Plane Strain 

An example application of PAP is made using Kelvin's 
problem for plane strain in which a line force (with dimension 
force/length) is applied in the ̂ -direction in an infinite linear 
elastic solid (Fig. 2). The Green's function for the induced 
stress ayy at point P(s, n) is given by Crouch et al., 1983: 

G{x, OP) = 2(1 -V)g„-ngnn (10) 

where c = Poisson's ratio 

1 
g(s, n) = 

4TT(1 - v) 
\n[(s-x)2 + n 2n 1/2 

g„ = dg/dn --
1 

47r(l-i>) (s-xf + n2 

gn„ = d2g/dn2 = -
(s-x)2 

(9) 

4TT(1-^) [(s-x)2 + n2]2' ( H ) 

For a certain distribution of line forces, p{x), as shown in 
Fig. 1, the induced stress, ayy at P, is given as F in equation 
(1). Now suppose that zeroth-order equilibrium exists (k = 0). 
It is to be shown, as an example, that (9) holds for two specific 
traction distributions. 

The first distribution is a constant distribution of applied 
traction along the x-axis and the second a linear distribution 
(Fig. 3). The induced stress, ayy, by each of the two distribu
tions has been found in closed form (Chan, 1986) and the 
stresses are compared along Section A (Fig. 3(a)). The ratio of 
ayy due to the linear distribution (denoted by PD (LSDE)) to 
that due to the constant distribution (PD(CSDE)) is plotted in 
Fig. 4 against y. It can be seen that the ratio remains at around 
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X (Y = X) 

Fig. 5 Ratio of induced <7yy along section B 

0.5. This is because, as according to (9), ayy is approximately 
proportional to p(_1)(/j), which is the total applied force (see 
(3)). The total applied force for the linear distribution is half 
of that for the constant distribution. The same ratio along Sec
tion B (Fig. 3(a)) is also plotted against x (Fig. 5). It can be 
seen that the ratio approaches 0.5 as x becomes large, i.e., r/h 
is large. 

For self-equilibrating applied traction distributions, Saint-
Venant's Principle holds which states that the induced stresses 
at points far from the origin are negligible (for example, see 
Sternberg, 1954; Horgan and Knowles, 1983). When viewed 
under the framework of PAP, we can see that the same con
clusion can be reached. For self-equilibrating traction p(x), 

p<_1)(/0 = 0 (force equilibrium) 

p(-2)(/i)= [ p^l\x)dx 

= [xp<-"(*)! - \ xp(x)dx 
L J O Jo 

-\hp<-~[Hh)-0 

-0. 

- 0 (moment equilibrium) 

Thus, second or higher-order equilibrium exists (k>2). From 
(9) and an inspection of (10) and (11), it can be concluded that 
the induced stress ayy approaches zero as r/h increases. Thus, 
in this example, PAP includes Saint-Venant's Principle and 
actually tells us how the induced stresses decay through (9). 

Extended Concept of "Equilibrium" 

The previous discussion shows that second-order 
equilibrium is static equilibrium under the conventional view
point. Applied distributions at higher-order equilibria and the 
resulting far-field stresses are examined in this section. Con
sider applied tractions on a straight line segment (Fig. 6) with 
example cases (b) to if). Suppose we are interested in induced 
oyy at point P, denoted by a, due to the applied tractions. At 
first we must determine the order of equilibrium of p(x). For 
p(x) given in Figs. 6(b) and 6(c), zeroth-order equilibrium 
(k = 0) exists because 

- 1 > ( 1 > ^ p(x)dx^0. 

In these cases, a is approximately proportional to 
„(-*-•) (I) = p<-»(1) 

" H I (1) 

(a) 

1/3 2/3 

(d) A force couple 

(1) i ( - 1 ) i ( - 1 ) 

(-1) a <i) 

1/3 1 

(b) A unit concentrated force 

P (x) = -2 

1/3 2/3 1 

(e) Self-equilibrating forces 

<1 ) | ( -3 ) f (3 ) | ( -1 ) I (-3) • (3)|(-1) 

i. 1 i • , ( 

(c) A uniform pressure (f) Self-equilibrating forces 

Fig. 6 Two-dimensional linear elastic medium under applied tractions 

p(x)=-&(x — j , 

where 5(x) is the Direc-Delta distribution. Therefore, 

In case (c), 

/ > ( * ) = - 2 . 

Therefore, 

P (-1 )(l)=Jo ' (-2)c?x=-2. 

In case (b) 

Thus, a in (c) is approximately twice that in (b), which agrees 
with intuition because the total applied force in (c) is twice that 
in {b). Here, Saint-Venant's principle cannot be applied direct
ly because the applied tractions in (b) and (c) are not statically 
equivalent. 

For case (d), 

pw=-*(*-4-)+*(*--f) 

.-. p<-»(x)=j%(*)rfx 

= -U(X~T)+U(X-T)' 

where u{x) is the unit step function. 

p(-2>(x)= j"p(- l\x)dx 

=- (*--fM*--f)+(*-TM*-T)-

Thus, 
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Fig. 7 Applied distribution at first-order equilibrium (k = 1) 

,(-') (1 )=-1 + 1=0 

n<-2>r 0)—0-T-) + (1-T-) = -T'40-

Therefore, first-order equilibrium (k=l) occurs. This result 
can also be obtained by integrating p{x) graphically as shown 
in Fig. 7. 

Since k = 1 in (d), a in {d) is of a lower order of magnitude 
than that in (6) and (c). 

For cases (e) and (/), static equilibrium exists, and by Saint-
Venant's principle a is small. However, by using PAP we can 
see further that a in (J) is actually of a lower order than a in 
(e). The integrations required to obtain the orders of 
equilibrium are carried out graphically in Figs. 8 and 9. 

In Fig. 8, after obtainingp(_2)(x), it is clear that p<_3)(x)^0. 
Thus, k-2. In Fig. 9, &=3. Thus, one is tempted to say that 
the applied tractions in Fig. 9 is "more at equilibrium" than 
those in Fig. 8. 

Theorem of Equivalent Expansions 

Fracture opening and slip displacements can be modeled by 
semi-infinite dislocations (Chan, 1986). A semi-infinite 
dislocation occurs when there is a displacement discontinuity 
across the two surfaces of a slit which begins inside an infinite 
medium and extends to the boundary at infinity. Figure 10 
shows a normal and a shear semi-infinite dislocation at the 
origin (Dd and Db, respectively). Only the opening mode is 
considered in the following discussion. 

Let d„(s) be the negative of the opening displacement along , 
the fracture axis (Fig. 11). Within the infinitesimal element of 
length ds at s, the opening increases by an infinitesimal 
amount dd„(s), i.e., the applied infinitesimal dislocation at s is 
dd„ (s). The applied dislocation distribution is then given by 

P(s)-
dd„(s) 

ds 

f 

1 

1 -

(-1) x) 

-2) 

1/3 

-1/3 

P * '•i (x) 

_) 1 ^j B^X 

Fig. 8 Applied distribution at second-order equilibirum (k = 2) 

PM 

(1) (-3) (3) (-

, 
1 1 

. 
1 

1) 

1/3 2/3 1 

p H ) ( x ) 

-1 

-2 + 

For an embedded fracture the closure condition demands that 

\—»~x 

Fig. 9 Applied distribution at third-order equilibrium (k = 3) 
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Fig. 10 Normal and shear semi-infinite dislocations 

y.n 

X P (s,n) 

B> 
-dn(s) 

Fig. 11 Fracture opening modeled by normal dislocations 

'" dd„(s) 
\o ds 

= 0 

i.e., p<-'>(/!) = 0. 

Thus, at least first-order equilibrium exists. When first-order 
equilibrium does exist, according to PAP the induced 
stresses/displacements at distances far from the crack are ap
proximately proportional to p{~2)(h) and 

p(-2)(/!)= ( pi~>\s)ds= \ d„(s)ds. 
Jo Jo 

The volume of expansion E of the fracture is defined as 

E=-\ d,l(.s)ds=-p^(h). 
Jo 

Thus, the Theorem of Equivalent Expansions, as a corollary 
of PAP, is formulated as follows: 

Each induced stress or displacement component at large 
distances from a crack due to its opening, with minor excep
tions, is approximately proportional to the expansion and is 
independent of the opening shape. 

A numerical experiment was carried out to verify the 
Theorem of Equivalent Expansions in Chan (1986). The in
duced displacements and stresses due to the collapse of an 
underground fracture were modeled using a computer pro
gram called FROCK (acronym for Fractured ROCK). FROCK 
is based on a hybridized Displacement Discontinuity Element 
and Fictitious Stress Element scheme (Chan et al., 1988), in 
which exact, closed-form influence functions for the elements 
were used. 

Fig. 12 shows a square medium with an embedded fracture 
under plain strain. If the fracture closes uniformly by 1 unit, 
the expansion is - 1 x200= -200 square units. The induced 
displacements and stresses (as calculated using FROCK) along 
Section A (Fig. 12) are, respectively, shown in Figs. 13 and 14 
in solid curves. When the expansion takes another shape in 
which the central half of the fracture closes uniformly by 2 
units, the induced displacements and stresses are shown in 
Figs. 13 and 14 in dotted curves. One can see that the cor
responding solid and dotted curves are very close to each 
other. This example shows that the induced displacements and 
stresses at locations far from the fracture mainly depend on 
the expansion of the fracture and not on the opening shape. 

The Theorem of Equivalent Expansions for each of the in
duced stress components in an infinite medium has been 
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Fig. 12 Collapse of underground fracture 
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Fig. 13 Induced displacements along Section A due to closure of 
embedded fracture 

Fig. 14 Induced stresses along Section A due to closure of embedded 
fracture 

proved in Chan (1986). There is an exception for induced axy 

at points P near the vertical axis (i.e., rf»s). However, in this 
case, the induced axy is small compared with the two other in
duced stress components and, hence, the exception is con
sidered to be minor. 

Similarly, by considering shear dislocation, the Theorem of 
Equivalent Distortions has also been established (Chan, 1986). 
These two theorems have important applications in fracture 
mechanics including monitoring of underground fracture ex
pansion using only surface measurements, indirect measure
ment of the expansion of a crack in a plate, and derivation of 
the equivalent moduli for fractured media. 

Electrostatic Fields 

The electric field strength (or electric intensity), E, in an in
finite free medium with permittivity, e, at a point P due to a 
point charge q is 
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Fig. 15 Electric field due to applied charge distribution p(x) 

E = 
1 Q 

Aire d2 

where d is the distance between q and P. For an applied charge 
distribution p(x) on the x-axis (Fig. 15), the Green's function 
of the ^-component of the electric field Ex is then 

— cos0 1 s — x 
Gx(x, OP) = -j—p- = — [ ( i S _ x ) 2 + „2 ] 3/2-

yn = v) rar irom tne applied cnarges. in this case, 

1 1 
Gx(x,OP)--

Aire (s — x)2 

The postulate that (recall r= \OP I) 

by the application of q. For free space $ref = 0, and the equa
tion for the electric field in the previous section can be ob
tained by (14). When <J?ref # 0 , both *„ and *ref have to be con
sidered in (14). 

In the previous section it has been shown that PAP is ap
plied to the partial derivative (E^ and Ey) of * 9 , here it can 
also be shown that PAP applies to * ? itself since its Green's 
function is 

Gq(x,OP) = 
1 1 

4ire ~J(s-x)2 + n2 

which satisfies postulate (12) with some exceptions. 
Note that PAP may not apply to <J? because its Green's func

tion, if any, depends on $ r e f . 
At this point it is interesting to notice that the asymptotic 

behavior of the far-field potential has been widely examined 
(for example, see Owen, 1963, II. J). Usually isolated concen
trated charges are considered and Taylor's series expansion is 
used on Gq (x, OP) to arrive at an infinite series. PAP differs 
from this usual approach because repeated integration by 
parts, instead of the Taylor's series, is used to arrive at the in
finite series in equation (6). 

Since now that PAP has been shown to be applicable to 
electrostatic fields, PAP can also be applied to other potential 
fields such as gravitation, magnetism, temperature, and fluid 
velocity potential because they can all be represented by poten
tial functions satisfying Laplace's equation. However, in the 
case of gravitation negative masses (if any) are required to 
create first and higher-order equilibria. 

Gf +lKx, O P ) « G « ( / * , OP), 0<x<h, r/h is large, (12) 

is clearly satisfied and PAP applies. If the point P is on the 
vertical axis, postulate (12) may not be satisfied. However, in 
this case Ex is small compared with Ey, and it can be shown 
that PAP applies to Ey whose Green's function is 

—- sin0 
GJx,OP) = 

1 

Aired1 Am [(s-x)2 + n2}V2' 

Similar arguments can be used to show that PAP also ap
plies to E ,̂ with minor exceptions. 

Other Potential Fields 

After PAP has been shown to be applicable to elec
trostatics, generalization to other fields covered by potential 
theory is immediate. At first we examine how PAP can be ap
plied in electrostatic potential theory: 

The governing equation of the electrostatic potential $(s, ri) 
is the Laplace's equation 

V 2 * = 
a2$ 
ds2 ~JriT - = 0. 

The electric field (Ex, E,) is given by 

Ev = Us - . E , = 
3$ 

~~dn~ 

(13) 

(14) 

An applied concentrated charge q at the point (x, 0) of an in
finite medium with permittivity, e, induces the potential 

1 <? 
$a(s, ri) = —. 

* 4 « J(s-x)
2 + n2 

The electrostatic potential $ is then 
* = * ? + *ref 

where $ref is the reference potential, which is the potential ex
isting before q is applied. It is assumed that #ref is not affected 

Magnetic Field of a Current-Carrying Wire 

Consider a long straight wire in an infinite space carrying a 
current I pointing perpendicularly out of the x-y plane. The 
current I can be regarded as a concentrated charge applied at 
the position of the wire. If the current is applied according to 
the distribution p(x) on the x -ax i s , the Green's function for 
the x and y - components of the induced magnetic field at P 
are, respectively, 

G v =- V-
2ir {s-x)2 + n2 

ix. s—x 
y~ 2w (s-x)2 + n2 

where ft. is the permeability of the infinite space. 
It can be shown that PAP applies to the magnetic field in

duced by the current-carrying wire, with minor exceptions. 
One application (which may not be economical at present) is 
that the induced magnetic field of current-carrying wires can 
be greatly reduced by arranging the wires so that a high-order 
equilibrium exists. For examples of higher-order equilibria, 
see Figs. 7 to 9. It is quite commonly known that a higher-
order equilibrium distribution can be obtained by subtracting 
the shifted distribution from a given distribution: If p(x) is at 
Ath-order equilibrium, p(x)-p(x-c) is at (£+l)-order 
equilibrium, where c is a nonzero constant. 

Conclusion and Further Comments 

• A general physical principle (PAP) has been established 
which uses the Green's function method to approximate the 
induced far field due to any applied charge distribution. For 
most physical problems (especially for problems with finite 
boundaries), the corresponding Green's functions have not 
been found. However, even for those problems, PAP is useful 
because (9) gives at least an approximate proportional 
relationship. 

This paper has dealt specifically with an applied charge 
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distribution on a straight line segment. For two and three-
dimensional geometries of applied charge distribution, similar 
formulations can be established. 
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Dynamics and Stability of a 
Flexible Cylinder in a Narrow 
Coaxial Cylindrical Duct Subjected 
to Annular Flow 
This paper considers analytically the dynamics of a flexible cylinder in a narrow 
coaxial cylindrical duct, subjected to annular flow. In the present analysis, in con
trast to existing theory, the viscous forces are not derived by an adaptation of 
Taylor's unconfined-flow relationships, but by a systematic, albeit approximate, 
solution of the Navier-Stokes equations, which accounts for the unsteady viscous ef
fects much more fully than heretofore; it is found that, for very narrow annuli, the 
contribution of these unsteady viscous forces to the overall unsteady forces on the 
cylinder can be much larger than that of the steady skin friction and pressure-drop 
effects alone. The present analysis also differs from existing theory in that the in-
viscid forces are not derived via the slender-body approximation, and hence the 
analysis is also applicable to bodies of relatively small length-to-radius ratio. 

The dynamics and stability of typical systems with fixed ends is investigated, con
centrating mainly on viscous effects and comparing the results with those of 
previous work. It is found that, as the annular gap becomes narrower, the system 
loses stability by divergence at smaller flow velocities, provided the gap size is such 
that inviscid fluid effects are dominant. For very narrow annuli, however, where 
viscous forces predominate, this trend is reversed, and further narrowing of the an
nular gap has a stabilizing effect on the system; furthermore, in some cases the 
system loses stability by flutter rather than divergence. 

1 Introduction 

The dynamics of cylindrical beams in axial flow was first 
studied theoretically and experimentally in the 1960s by 
Paidoussis (1966a,b) for systems in unconfined flow. In the 
theory, the inviscid forces were formulated by means of 
slender-body theory, and viscous forces were adapted from 
formulations developed earlier for unconfined flows by 
Taylor (1952). It was found, both theoretically and experimen
tally, that cylinders with both ends supported lose stability by 
divergence, followed at higher flow by coupled-mode flutter; 
in contrast, cantilevered cylinders lose stability by one-degree-
of-freedom flutter (Hopf bifurcation), and this only if the free 
end is streamlined (i.e., it is terminated by an ogival end). 
Similar work was conducted for towed cylinders, displaying a 
more intricate dynamical behavior (Hawthorne, 1961; 
Paidoussis, 1968). 

The theory was extended later (Paidoussis, 1973), removing 
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an inconsistency in the formulation of the viscous forces 
(which did not change the predicted dynamical behavior 
substantially) and considering the effect of confinement of the 
flow by a duct. Both inviscid and viscous forces were 
developed from the earlier formulations. It was found that, as 
the flow is confined, the unsteady inviscid forces associated 
with lateral motions of the system become larger (effectively, 
the virtual mass of the fluid is increased) and the system loses 
stability much earlier. 

The theory was further refined (Paidoussis and Ostoja-
Starzewski, 1981) by (/) deriving the inviscid forces for con
fined flow by the full (linear) potential-flow theory, rather 
than the slender-body approximation, so that the analysis be 
applicable to nonslender cylinders also, and (//) considering 
compressibility effects. The inviscid forces in this case were 
formulated by means 6f the generalized force Fourier-
transform method. It was found that the potential flow refine
ment effectively raised the critical flow velocities for instabil
ity, since slender-body theory overestimates the fluid-dynamic 
forces on cylinders of relatively small length-to-radius ratio, 
L/a. Compressibility effects were found to be secondary, 
unless L/a were small. Nevertheless, in this otherwise 
sophisticated analysis of the problem, the viscous force for
mulation based on an adaptation of Taylor's expressions for 
unconfined flow was retained. 
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In parallel to the foregoing, similar and notable research on 
the dynamics and flow-induced vibration of cylinders in axial 
flow was conducted by Chen and co-workers (Chen and 
Wambsganss, 1971; Chen, 1977; Yeh and Chen, 1978), where 
the references cited are examples of an extensive set of 
publications. 

This paper presents a new formulation of the equations of 
motion, with the following principal differences to existing 
theory. First, the inviscid forces are obtained by potential flow 
theory, not using the slender-body approximation, so the 
theory is applicable also to cylinders of small length-to-radius 
ratio—but utilizing the simplifying assumption of a small an
nular gap with respect to the cylinder radius (Mateescu and 
Paidoussis, 1984), corresponding to the technologically most 
important geometry (Hobson, 1982; Mateescu and Paidoussis, 
1985, 1987). Second, and this is the principal contribution of 
the present work, the unsteady viscous forces were not for
mulated by an adaptation of Taylor's expressions but by a 
systematic, albeit approximate, application of the Navier-
Stokes equations (Mateescu and Paidoussis, 1985). The need 
for this new formulation becomes obvious when it is realized 
that the earlier one based on Taylor's expressions gives rise to 
viscous forces which are associated with skin friction and 
pressure-drop effects and are therefore passive, in the sense 
that they do not influence the unsteady flow around the 
oscillating cylinder. Although this is quite reasonable for un-
confined or slightly confined flow, it is clearly not realistic for 
highly confined annular flows. In this paper, these unsteady 
coupled viscous effects, i.e., the viscosity-related modification 
of the unsteady pressure, are taken into account, albeit ap
proximately, and will be seen to exert considerable influence 
on the dynamics of the system. 

The motivation for this study is both academic and prac
tical. Rigid or flexible cylindrical elements in narrow annular 
flows are widely used in engineering and have been known to 
be subject to instabilities and large vibrations; e.g., control 
rods in guide tubes of PWR-type nuclear reactors, fuel-cluster 
stringers in AGR-type reactors, feedwater spargers in BWR-
type reactors, tubes in the baffle regions of some kinds of heat 
exchangers, and certain types of valves and pistons (Mateescu 
and Paidoussis, 1985, 1987). The interested reader is also 
referred to Hobson's (1982) and Mulcahy's (1980, 1983, 1988) 
work on flow-induced instabilities in narrow annuli, 
sometimes referred to as leakage-flow-induced vibrations or 
instabilities. 

2 The Equation of Cylinder Motions 

The cylinder under consideration has radius a (diameter 
D = 2a), cross-sectional a r e a ^ , lengthL, density ps, and flex-
ural rigidity EI. The annular gap is H, hence the radius of the 
confining duct is ad = a + H, and the undisturbed flow velocity 
in the annulus is U (Fig. 1). 

Let e0(x,t) be the lateral displacement of the cylinder, 
which is assumed to be small. The equation of motions may be 
written in the form (Paidoussis, 1973) 

94e„ V dPm fL 1 32e„ 

a*4 

dx 

dx 

de° ;. A 
s dx 

d2e0 

dt2 

dx2 

= Fp+Fv, (1) 

where Pm (x) is the mean pressure in the duct, Fp (x,t) is the 
unsteady potential (inviscid) fluid force acting on the 
oscillating cylinder per unit length, Fv(x,t) is the unsteady 
lateral viscous fluid force, and F, (x) is the longitudinal steady 
viscous force per unit length due to the longitudinal compo
nent of skin friction on the cylinder. This form of the equation 
of motion applies to the case where the cylinder, although 
clamped at both ends in terms of lateral motion, can slide ax-

~ - ^ = ~ 

1 

Fig. 1 Geometry of the cylinder oscillating in a duct with annular flow 

ially at the downstream end, so that terms due to pressuriza-
tion (Paidoussis, 1973) are absent here, but will be discussed 
later. It is thus obvious that equation (1) is that for an Euler-
Bernoulli beam, subjected to variable tension arising from sur
face traction due to skin friction, which is related to the 
pressure drop in the annular flow, as well as to coupled in
viscid and viscous lateral forces. 

The task ahead is the determination of the inviscid force, 
Fp, in Section 3, and the viscous forces F,,FU, and (dPm/dx) 
xAs in Section 4. 

3 Derivation of the Inviscid Forces 

These forces will be derived by potential flow theory. The 
velocity potential, $(x, r, 6, t), must satisfy the Laplace equa
tion 

V 2 * = 
32<E 

dx2 

3 2 * 

dr2 

1 3 * 

r dr 

1 3 2 * 
= 0, (2) 

subjected to the boundary conditions 

a * 
dr 

a* 
~dr~ 

a * 

= 0, 

der 

~~dT 

= u, 

3 $ der 1 3$ 1 de, 

dx dx dd de • ] , . . • 

(3) 

where er is the radial displacement at the azimuthal direction 
6, 

er(x,6,t)=e0(x,t) cosQ=E(x) cos0 e'ai. (4) 

The velocity potential may be written as 

* = </>, + <£, (5) 
the sum of steady and unsteady components. Because of cylin
drical symmetry, the steady-state component simply gives 
drj>s/dx=U. Hence, assuming small motions, the boundary 
conditions may be linearized and simplified to 

d4> 

~a7" 

d<f> 

~dr~ 

der 

~~ It 

= 0, 
=°d 

d<t> 

"dx 
= 0, (6) 

der + U^- = [iQE{x) + UE'(x)]cosd eim, 
dx 

(7) 

where the prime denotes differentiation with respect to x. 
Now, E(x) could be clearly expressed in terms of eigenfunc-

tions \pk (x) of a beam with the same boundary conditions as 
the cylinder under consideration (clamped-clamped). 
However, as will be seen shortly, it is more convenient to 
separate these eigenfunctions into two components, one 
trigonometric, ^ u (x), and the other hyperbolic, \j/lk (x); thus, 

£(*) = 2]M^(*) = I]tfJiM*) + iM*)]. (8) 

where 
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*P\k(x) = — cosPkx+ok&m@kx, 

ipik M = c o s n Pkx~ ff*sinh fikx (9) 

L and ak = (cosh @kL-cos /3/tL)/(sinh /3^-L-sin /3<.£), the M* 
being the corresponding eigenvalues. 

In view of equations (4) and (8), reduced potentials 4>k (x,r) 
may be introduced as follows: 

4>(x,r,6j) = J^akj>k(x,r) cosfl eiw. (10) 

Furthermore, changing variable r to z, defined by 

z = r-a, (11) 

and restricting the analysis to very narrow annuli, where 
r — a« a, so that l/r-l/a, one obtains 

d24>k + Hk_ + J_i^ _J_ 
3x2 dz2 a dz a2 „2 ^k 

= 0, (12) 

with the boundary conditions 

dz z = ha =o, dz z=0 
= iQtk(x) + Ut'k(x), (13) 

where h= (ad — a)/a = H/a. 
The solution of (12) may be effected by separation of 

variables. Thus, defining 

$k(x,z)=fk(x)Fk(z) (14) 

and substituting into (12) gives 

d2fk/dx2±l3lfk(x)=0, (15a) 

a2 d2Fk/dz2 + a dFk/dz- (1 ±Pl a2) Fk(z) =0, (15b) 

where, in view of equations (9), the separation variable is 
equal to f$2

k. Clearly the two sets of solutions arising for + &\ 
and —/3| can each be associated with either \j/xk or \j/2k defined 
by (9), which a posteriori justifies the introduction of these 
two components of \j/k. 

Considering the + / j | case, it is found that 

flk(x) =AX cos (Skx + A2 sin /3kx, 

F\k(z) ~ [cosn (QkZ/a) + R{ sinh (qkz/a)\e 

where 

5 l " 

- Vi z/a 

Qk = [—+««* ] ' . 
Substituting into boundary conditions (13) leads to 

flk (x) [dFlk/dz]z=0 = / Q tik (x) + U xf,{k (x), 

fik(x)[dFlk/dz]^ha=0, 

(16) 

(17) 

(18) 

through which the constants A,, A2, R\, may be determined, 
and thus also <i>u. Proceeding similarly, the solution 
associated with -$\ in equations (15), 4>2k,

 m a y a l s o be deter
mined. Hence, (j>k = <j>ik + 4>2k, evaluated on the surface of the 
cylinder (z = 0), is found to be 

4k (x,0) = a £ GJk[iQ tjk (x) + U +jk (x)], (19) 

where 

G\k = 

-qk+ — - tanh (qkh) 

(q\- - ^ - j t a n h (qkh) 

Git,— 

tan {c*kh) 

(*-r) tan(ckh) 

~ck + tanh (ckh) 

\c\ —j tanh (ckh) 

the qk are given by (17) and 

for ffia2 > 

for P2
ka

2 < 

[^--L]*, Ck = [-L-{iW (21) 

It ought to be noted that the restriction of the analysis to nar
row annuli results in a closed-form solution; otherwise, a solu
tion would still have been possible, but would involve Bessel 
functions. 

Having determined </>, and hence $, the pressure on the sur
face of the cylinder may be found, after suitable linearization, 
through the unsteady Bernoulli equation, 

P-P„=~pU2- p V * 2 - p 
2 3t 

(22) 

where p is the fluid density. Hence, the force on the cylinder 
may be obtained by integration, 

FAx,t) = - \ a[P-Pm] cos0 dd. (23) 

Utilizing equations (5) and (19) and d4>s/dx=U in (22), Fp is 
found from equation (23) to be 

Fp (x, t) = ~pa2Tr eia< D a k ( -Q 2 P k 2 + ffl Pkl + Pk0), (24) 
k 

where each of the Pkj is associated with they'th time derivative. 
Hence, Pk2 is the component associated with inertial effects, 
Pkl with damping effects, and P w with stiffness effects; they 
are given by 

J = I 

p*2 = - £ GJk+Jk, Pkl = - 2 1 / £ GJM, 

P*o=-Vifi£(-l)iGjlc+Jk. (25) 
j=i 

4 Determination of the Viscous Forces 

It is most convenient to develop this work in nondimen-
sional terms, and to this end 

* = — ' * = h = 
a a 

rr. Ut 

T=—,p--
a 

~Tur =Pv+Pp< (26) 

are defined, where the subscripts p and v stand for potential 
and viscous components, respectively. Hence, for fully 
developed laminar flows the continuity and the first of the 
three Navier-Stokes equations may be written as 

1 du 1 3 1 dw 
= 0, (27) 

1 d 1 

36 

du u du du w du 

dT I dX 

2h r 1 

dR R dd 

1 d 

Re 
r 1 d^u 1 d / du \ 
l j dX2 + ~R~~dR\R ~W/ 
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1 d2U 

W de2 
1 dp 

~T~d~x 
(28) 

c • tR9 

while the other two Navier-Stokes equations are not given here 
for brevity; u, v, w are the components of the dimensionless 
flow velocity, nondimensionalized with respect to the mean 
flow velocity U, and Re is the Reynolds number based on the 
hydraulic diameter of the annulus, DH = 2H=2ah. 

The velocity vector associated with potential flow may be 
written as U\(l + up)ix + vpir + wpie\, where up = (d<t>/dx)/U, 
vp = (d<j>/dr)/U, wp = (dcj>/dd)/Ur, and the associated pertur
bation pressures as pp=-(Pp-Pa)/(p U2). Then, one may 
write 

u(x,r,0,t) = u„ (x,r,B,t) + up (x,r,d,t) (29) 

and similarly, for v, w, and p, where uu, vv, w„, andp„, the 
components associated with viscous effects are considered to 
depend only slightly on 6 and t. 

Now, for potential flow, equations (27), (28) may be re
duced to Euler's equations of motion, which subtracted from 
(27), (28) yield 

1 du„ 1 d . „ , 1 dwv „ 

/ dX R dR v " ""' ' 

du„ u duv duv w 
1 + "- +V "- + 

dT I dX dR R 
u„-l du du 

H — + V„ — 
I dX " dR 

2h 

Re 

" 1 d2u 1 

112 dX2 + R 

R de 

duu 

de 

w„ dup 

R de 

d / ^ 

dR V dR . 

1 d2U 

R2 de2 
1 dPv 
I dX 

= 0, (3D 

and, similarly, for the other two Navier-Stokes equations. 
These equations are then simplified drastically by invoking 

once more that h«1 for narrow annuli and by introducing 
the following assumptions which are similar to those utilized 
by boundary layer theory, and which may be justified for not 
very high oscillation frequencies and Reynolds numbers: (i) 
the radial component of viscous motion v„ is negligible and 
(//') the circumferential and axial variations in u and w are 
negligible as compared to radial variations of the same com
ponents. A fuller account of the foregoing may be found in 
Mateescu and Paidoussis (1987), where it is shown that on the 
basis of these assumptions equations (30), (31) reduce to 

d2u 

3Z2 

Re 1 dpv 

~2A~T~ dX 
a2> Re 1 dfv 

0 = 

dZ2 

dPv 
dZ ' 

2h R de 

(32) 

where Z is defined as Z = z/a = R — \. 
With the aid of Fig. 2, the total mean (over the gap height) 

dimensionless velocity may be approximated by 

V(X,6,t) = u cos/3 + w sin/3, (33) 

where /3 may be expressed as 

sin/3 = w/V^w(X,e,t), (34) 

since the dimensionless total mean velocity is approximately 
equal to unity. This is the key to this simplified treatment of 
unsteady viscous effects: The total mean flow velocity re
mains approximately constant in magnitude, but its direction 
fluctuates circumferentially through a small angle /3, 
associated with cylinder motions. 

For the purposes of this simplifed analysis, w will be 
calculated from the potential flow as obtained in Section 3; 

Fig. 2 Diagram showing transformation of coordinates and definition 
of the angle /3 

from the potential <j> and the relationship w = 
(d4>/d0)/( UaR), one obtains by integrating across the gap 

^^k[i/*wAs{n6em' (35) 

where 

Wlk = \oT+7 [ c o s h ^ Z ) + * i sinh(.qkZ)]eU2ZdZ, (36) 

W,„ = 

z 
l> - 1 

o 1 + Z 
[cos(cjfZ) +RZ sin(c*kZ)]el/2ZdZ 

for {&kaf > 
4 ' 

rh _ j 
[cosh(citZ)+.R1 sinh(ckZ)]eU2ZdZ 

for (&ka)2< 
4 ' 

the qk,ck, and ck have been given in (17) and (21) and 

Ri 

qksmh(qkh) — cosh(qkh) 

-qkcosh(qkh)+ -—sinh(qkh) 

R! 

ck sin(ckh) H—— cos(ckh) 

4 cos(cp) — sin(c|/?) 

-ck smh(ckh) + cosh(cAr/i) 

ck cosh(ckh) — sinh(ckh) 

(37) 

Using the chain rule of differentiation, the first two of equa
tions (32) may be combined in terms of the new set of coor
dinates (£, f) (see Fig. 2) leading to 

^ = ^ ^ , (38) 
dZ2 2h d£ 

where V= V(Z). Applying equation (38) to the usual no-slip 
boundary condition gives 

V(Z) = -
Re dpv ;-fz(*-z)]. (39) 
2h d£ 

By integrating over the narrow annulus, the total mean non-
dimensional flow velocity, which is equal to 1, of course, is ex
pressed in terms of the viscous perturbation pressure gradient. 
Thus, 
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i h n 2TT 

(1 + Z)K(Z) cos(3dZd8 = -K[(l + h)2-l]. (40) 

Then, substituting (39) into (40) and recalling that ft«l, 
the integral in the latter is evaluated yielding 

3£ h Re ' 

Hence, the (dimensional) shear stress on the surface of the 
cylinder is given by 

(41) 

T=(l-
U dV 

~~a~ dZ 
= p U2 

12 

~Re~ 
(42) 

it is noted that the magnitude of T is practically independent of 
time. 

The shear stress on the cylinder may be separated into two 
components: an axial and a circumferential one, 

TX = T cos/3 — T, T0=T sin/3, (43) 

respectively. 
The analysis has now progressed sufficiently to be able to 

evaluate the steady longitudinal force F, and the unsteady 
lateral viscous force, Fv, of equation (1), which is given by 

F,= \\xadB. 

!

2n 

[T„ sinfl+pt/2 pv cosd]a d6. 

Utilizing (43) it is found directly that 

24 

Re 
IT a p U1. 

(44) 

(45) 

The evaluation of Fv is more involved, but by reference to 
Mateescu and Paidoussis' (1987) work and some perseverence, 
the reader should be able to reproduce the following result: 

Fv=-pa2-w e™Eak(fQ Pki + P w ) , (46) 

where 

P»=U-
12 2 + h 

Re ah2 E GJk Wjk ipjk, 

• U2 
12 2 + h 

Re ah2 E G* W* V*- (47) 
y'=i 

Finally, (dPm/dx)As in equation (1) may be obtained via 
(41), i.e., 

dx 
•A. 

dpv PU2 

3£ a 
A.= -

24 pU2 

Re ah 
A,. (48) 

In this paper, the viscous forces have been formulated by an 
approximate solution of the Navier-Stokes equations for the 
unsteady annular flow field, accounting for the unsteady 
viscous effects much more fully than the semi-empirical for
mulation utilized heretofore. Furthermore, although the 
foregoing analysis applies to laminar flow, its extension to tur
bulent flow, e.g., using an eddy-viscosity model, is quite 
feasible. 

5 Nondimensionalization and Stability Analysis 

All unknown terms in equation (1) have now been deter
mined and the equation of small motions (1) may be written as 

d4e„ f 24 _ / . 1 \ ._ i d2en »£-[-£-»">('-r)«-4 dx2 

24 1 „ de0 

Re 

d2e0 

dt2 = FP + FV, (49) 

Considering also the case where the axial sliding is at the 
upstream end, so that the axial tension distribution is reversed, 
and the case where no sliding at all is permitted, where com
pression may arise also through external pressurization 
(Paidoussis, 1973), this equation may be generalized to 

d4e0 24 . / 1 \ 
EI — 4 - - -^r— rap U2[l + J 

dx4 Re 

[0--r*)H 
-(l-2v)6(2-5)PA3 

+ PSAS 

d2e0 

dx2 

d2e0 

dt2 

24 

Re 

d2e0 

dx2 

J-vapU2^ 
h dx 

=FP+F{>, (50) 

where 5 = 0 corresponds to the case of an axially-sliding 
downstream end, 6 = 2 to a sliding upstream end, and 5= 1 to 
no axial sliding at either end; v is Poisson's ratio and P is the 
overpressure at the midpoint of the cylinder, 1/2L. 

Introducing now the nondimensional parameters 

e0 - ( EI \'A t /psAs\ 
QL2 

P-KL2 

n= 
PAX2 

•K a2L K^F) »• (51) 
psAs EI \ EI 

and together with equations (26) substituting into (50), the 
dimensionless equation of motion is obtained 

**--£-«0-r)[('"r')-4-Re 

•(l-2v)8(2-S)Ilv" 
24 tfi± 
Re ' ^ - t i i y ) 4 ^ - ^ ' (52) 

where Fp and Fv are given by (24) and (46), respectively, and 
the primes and dots denote differentiation by X and T, 
respectively. 

This equation was discretized by Galerkin's method, utiliz
ing the \l/k (equation (9)) as comparison functions, and 
transformed into a standard eigenvalue problem, from which 
the dimensionless eigenfrequencies of the system, oi„, may be 
obtained and stability assessed. Some examples of results ob
tained in this manner are presented next. 

6 Dynamics and Stability: Results and Discussion 

6.1 Results for Not-Too-Narrow Annuli. The dynamical 
behavior of the system is illustrated in Figs. 3 and 4, where 
/ = L/a = 20, h = 0A, <r=323.7, {EI/p-wa2L2)\A = 1.33 m/s, 
and ix = 0.007 Pa s; n is relatively large here (typical for oil) to 
highlight the effects of viscous flow.1 In Fig. 3 are presented 
the real and imaginary components of the lowest three eigen
frequencies as functions of U, calculated according to (/) en
tirely inviscid (potential) theory, jii = 0, and (//) unsteady 
viscous theory, but excluding the steady viscous effects (i.e., 
pressurization effects, surface traction and related pressure 
drop, which are time-independent). In Fig. 4, on the other 
hand, the complete analytical model is utilized, including all 
potential and unsteady and steady viscous forces. It is recalled 

To give the reader a physical appreciation of this system, it should be stated 
that in this case the ratio of added mass to structural mass-per-unit length is 
8.09, whilst the first-mode natural frequency at zero flow is 2.92 and 2.74 Hz, 
respectively, according to inviscid and (full) viscous theory. For other cases of h 
and for other fluids, the reader may scale these quantities appropriately (the 
density of water is approximately 7 percent higher than that of the oil used in 
these calculations). 
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Fig. 3 The (a) real and (b) imaginary components of the nondimen
sional eigenfrequencies of the lowest three modes as functions of the 
nondimensional fluid velocity, 0, for potential flow ( ) and viscous 
flow ( ) considering potential and unsteady viscous effects 
(L/a = 20, H/a = 0.1, (r=323.74, [El/faira2Lz)]Vi =1.33 mis, and p = D and 
0.007 Pa s, respectively: o, first mode; », second mode; A , third mode 

Table 1 The critical points for divergence and coupled-mode 
flutter for the system of Figs. 3 and 4 (ft = 0.1) 

Theory 

Potential 
With uns 

viscous 
teady 
forces 

Complete theory 
(C-CS ends) 
(CS-C en 
(C-C, 11 = 
(c-c, n= 

ds) 
= 10) 
= 50) 

Critical values of O 

Divergence 
Vcd 

2.13 
2.29 

2.49 
2.10 
2.30 
2.37 

Coupled-mode 
flutter, Ucf 

3.50 
3.56 

3.80 
3.33 
3.57 
3.62 

Table 2 Comparison of Ucd obtained with the potential-flow 
versions of the present and earlier theory 

/ h Values of Ucd Percent discrepancy 
Present Paidoussis Based on last 
theory (1973) column 

20 
0.05 
0.10 
0.15 

1.49 
2.13 
2.64 

1.39 
1.94 
2.34 

7.2 
9.8 

12.8 

100 
0.01 
0.05 

0.631 
1.425 

0.627 
1.387 

0.7 
2.7 

10 
c 

3 

i 5 

- 5 

-10 

({(( -\1 

, 

mil 
lm\ 
" \ ^ 

-^/ if 
\WLt I 

0.0 2.5 5.0 

Fig. 4 The imaginary components of the nondimensional eigenfre
quencies of the lowest three modes as functions of the nondimensional 
fluid velocity, U, for viscous flow considering potential and steady and 
unsteady viscous effects for the system of Fig. 3: • , C-CS 
ends; o , CS-C ends; A , C-C ends (n = 10); • • • a 
C-C ends (n = 50) 

that the system loses stability if Im(u>„) < 0, by divergence 
when Re(u>„) =0 and by flutter otherwise. 

According to potential flow theory for h = 0.1, the system 
loses stability at (7=2.13 (point A in Fig. 3) in its first mode 
by divergence. At high flow this mode is restabilized at 
(7=3.21 (point B, Fig. 3) and then first and second mode loci 
coalesce and the system losses stability by coupled-mode flut
ter at point C(U= 3.50). At higher (/the system is subject to a 
succession of coupled-mode flutter and divergence in
stabilities, as may be seen in Fig. 3. 

The presence of unsteady viscous forces has the following 
effects on the dynamics of the system. The eigenfrequencies, 
in the stable regime, are complex, rather than purely real as in 
the potential flow case; i.e., the system is subject to damping 
due to the presence of fluid in the annulus (sometimes referred' 
to as squeeze-film damping). As a result, it takes a higher flow 
to precipitate divergence; the system loses stability at point A ' 
(not at point a) for (7=2.29. Similarly, coupled-mode flutter 
occurs at a higher flow, (7= 3.56. Nevertheless, the fundamen
tal dynamical behavior of the system remains the same as for 
potential flow. In this respect it is significant that almost up to 
the point of loss of stability, the Im(<jj„) remain essentially 
constant with U. 

Introducing now the results of the full theory, it is noted 
that Re(o»„) varies with (/more or less the same as before, and 
hence only the Im(co„) are given in Fig. 4, for various cases 
depending on whether one of the clamped ends allows axial 
sliding (defined as a CS end) or not (C end); so, we have cases 
of C-CS, CS-C, or C-C support, where the first, for example, 
denotes a clamped end at X=0 and a clamped-sliding end at 
X= 1. For a C-C system, pressurization effects come into play 
and in Fig. 4 are shown two different cases: 11=10 and 
II = 50. The results are summarized in Table 1. 

Hence, in this particular example it is clear that the steady 
viscous effects are generally as important as the unsteady ones 
(Table 1), being stabilizing when the downstream end can slide 
axially and destabilizing when the upstream end can do so; in
deed in the latter case, the values of Ucd and Ucf are lower 
than those of pure potential flow. For wholly fixed ends (and 
relatively small II), the end of steady forces is smaller, and as 
seen in Table 1, the unsteady viscous effects are much more 
important. Also seen in Table 1 is that pressurization (II) in 
that case has a stabilizing influence, as expected (Paidoussis, 
1973). 

Before presenting results for narrower annuli, h<0.1, 
where as will be seen in Section 6.3 the dynamical behavior is 
more interesting and unexpected, comparison will be made 
with previous theory. 

6.2 Comparison With Previous Theory. Here the critical 
flow velocities, as predicted by the present and previous 
theories, will be compared for situations where both should be 
applicable. 

It is well known that the critical flow velocity for 
divergence, Ucd, may be found directly by Euler's method, 
where all time-dependent terms in the equation of motions are 
neglected, including the unsteady viscous effects. It is instruc
tive to do just that and to compare the results with those of 
Paidoussis' (1973). This is done for the simplest possible situa
tion, where all viscous terms are neglected. The results are 
shown in Table 2. It is noted that Ucd for Paidoussis' theory 
was calculated from 

Ucd = 2-w/xv', X = 
( l+ / ! ) 2 + l 

( 1 + A ) 2 - 1 
(53) 
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Table 3 The critical points for loss of stability for the 
systems of Figs. 3, 4, and 6 compared, showing the effect of 
the annular gap, h 

\ 

' 

< b > . 

•—\ ' j ' 

/ \ ' / 
T ' 

—-. r 
\\ '/ \ // 

/ / 
1 
1J 

I \ 
1 
1 \ 

1 \ 

\ \ 
\ \ \ V 

Fig. 5 The present theory ( ) compared with that of Paidoussis 
(1973) ( ), for the case of ( = 20, ft = 0.10, [El/(p*a2L2)]Vl = 1.3 m/s 
and n = 0.00115 Pa s 

Fig. 6 The (a) real and (b) imaginary components of the nondimen-
sional eigenfrequencies of the lowest three modes as functions of the 
nondimensional fluid velocity, U, for potential flow ( ) and viscous 
flow ( ) considering potential and unsteady viscous effects for the 
system as Fig. 3, but h = 0.075; o, first mode; a, second mode; &, third 
mode. 

easily obtainable in such simple form, because of the simplic
ity of the slender-body formulation. 

It is seen that best agreement is for a very slender body 
(/=£/«= 100), where slender-body theory (Paidoussis, 1973) 
applies best, and for a very narrow annulus (h = 0M), where 
the narrow-annulus simplification of the present theory (see 
equation (12)) also applies best. In any event, from the results 
of /= 100, h = 0.05, it is seen that the latter simplification is 
quite justified for very narrow annuli. Also seen from the 
results for h = 0.05, comparing IIcd for I =100 to that /=20, is 
that slender-body theory overestimates the inviscid forces con
siderably, even for such relatively slender cylinders as /=20 
(refer also to Paidoussis and Ostoja-Starzewski (1981)). 

Next, the results obtained with the full theory are compared 

Theory 

Potential 
With unsteady 

viscous forces 
Complete theory 
(C-CS ends) 
(CS-C ends) 
(C-C, n = 1 0 ) 
(c-c, n=50) 

Critical values of O 

h = 0.l 

2.13* 

2.29* 

2.49* 
2.10* 
2.30* 
2.37* 

'Divergence; **Coupled-mode flutter 

A = 0.075 

1.84* 

3.34** 

4.54* 
2.97** 
3.35** 
3.41** 

Table 4 Critical flow velocities for systems with different 
dimensionless annular gaps, h (full theory); in the case of C-C, 
11 = 50 

End 
conditions 

C-CS 
C-CS 
C-CS 
C-CS 

CS-C 
CS-C 
CS-C 
CS-C 

c-c 
C-C 

c-c 
c-c 

h 

0.15 
0.10 
0.075 
0.05 

0.15 
0.10 
0.075 
0.05 

0.15 
0.10 
0.075 
0.05 

U 

2.78 
2.49 
4.54 
6.80 

2.54 
2.10 
2.97 
5.15 

2.76 
2.37 
3.41 
5.97 

Type of instability 
and mode, n 

Divergence, n = 1 
Divergence, n = 1 
Divergence, « = 2 
Flutter, n = 3 

Divergence, n = I 
Divergence, n=\ 
Flutter, n = 2 
Flutter, n = 3 

Divergence, n = 1 
Divergence, n=\ 
Flutter, n = 2 
Flutter, n = 3 

with those of Paidoussis' (1973) in Fig. 5, for a case /=20, 
/i = 0.10, [EI/pira2L1)XA = 1.3 m/s and ;t = 0.00115 Pa s, cor
responding to water flow; in Paidoussis' (1973) theory the 
following parameters were used: (3 = 0.5, ecf = 0.25, c=l.0. It 
is noted that in this case the Re(o)„) obtained by the two 
theories are similar; the results of the older theory are slightly 
smaller, which reflects the overestimation of fluid effects by 
the slender-body theory. The discrepancy is larger for Im(co„), 
where the older theory (Paidoussis, 1973) gives somewhat 
smaller values, supporting the supposition made at the outset 
that the estimation of viscous effects by an adaptation of 
Taylor's relationships is not particularly appropriate for the 
study at hand. In Paidoussis' (1966a, 1973) theory, unsteady 
viscous forces are taken into account by an adaptation of 
Taylor's relationships, presuming that the mean flow field is 
approximately the inviscid one, which is not particularly true 
for narrow annular flows; moreover, the friction coefficients, 
Cj- and c are entirely empirical. The strength of the present 
theory is that the unsteady viscous forces are predicted 
analytically via an approximate solution of the Navier-Stokes 
equations for the viscous flow in the annulus and are, 
therefore, expected to be closer to reality—especially for very 
narrow annuli, to be discussed next. 

6.3 Results for Very Narrow Annuli. For narrower an
nular configurations, h<0.\, which represent the most in
teresting situations for engineering applications, the unsteady 
viscous effects become the most important factor in stabilizing 
the system. An example is shown in Fig. 6 for h = 0.075. In this 
case, the system loses stability, not by divergence but by 
coupled-mode flutter (point C in Fig. 6, where Re(co)^O), 
due to unsteady viscous effects, which is a fundamentally im
portant result to be discussed later. The effect of steady 
viscous forces in this case is relatively less important, as may 
be seen in Table 3 (the equivalent of Fig. 4 for this case of 
h = 0.07'5 has not been presented for brevity). 

238/Vol. 57, MARCH 1990 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.244. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Of course, in the last analysis, what is most significant is the 
overall effect of annular flow on stability, including all terms 
in the equation of motion: inviscid and viscous, unsteady 
and steady. The most important results for various annular 
gaps are summarized in Table 4. 

A number of significant observations may be made from the 
results of Table 4. First, for each of the three cases of end con
ditions, it is seen that the system is destabilized as h is reduced 
from 0.15 to 0.10. However, as h is further reduced to 0.075 or 
0.05, there is a significant stabilizing effect, and the critical 
flow velocities become higher (see also Table 3). This physical
ly reasonable dynamical behavior, associated with the viscous 
effects eventually becoming more important than inviscid ones 
for narrow enough annuli, is demonstrated analytically for the 
first time in this paper. The second point of interest is that the 
mode and type of instability change with h. In terms of Figs. 3 
and 6, for h = 0.075 the viscous effects, steady and unsteady, 
become stronger and the Im(<jj„) for small values of XJ are 
much larger. Thus, the first "loop" in the locus of the first-
mode Im(w„) has no segment with Im(u„) < 0; the second-
mode loop, which is normally larger (Fig. 6), eventually does 
lead to instability—by divergence if the system is under ten
sion by the steady viscous forces (C-CS system), and by 
coupled-mode flutter otherwise. 

The loss of stability, in some cases (Table 4) by flutter, is an 
entirely new result obtained by this theory and calls for some 
discussion. It may appear surprising that a system with both 
ends supported, i.e., an "inherently conservative" system, can 
lose stability by flutter and not by divergence (Paidoussis, 
1980, 1987). Howver, of course, the system is truly conser
vative only so long as unsteady viscous forces are totally ab
sent; indeed, from the results for potential flow theory (not 
shown here for brevity), the system loses stability by 
divergence no matter how small h is. Once the unsteady 
viscous forces are included, however, the system becomes non-
conservative in the proper sense, and hence different routes to 
instability are possible. The dynamics of the system for 
relatively wide annuli follows the pattern of the potential-flow 
conservative system; for very narrow annuli, however, where 
damping forces are stronger, the dynamical behavior is quite 
different. 

Similar observations have been made by varying jx, but will 
not be discussed here for the sake of brevity. 

7 Conclusions 

A new and improved analytical model has been developed 
for the dynamics and stability of flexible cylinders in a narrow 
duct with annular flow. This theory is capable, for the first 
time, of taking fully into account unsteady viscous effects and 
of predicting the viscous forces analytically, rather than 
empirically. 

A number of significant new results were obtained with the 
aid of the new theory. The most important one is that there are 
two opposing effects on the dynamics of the system as the an
nular gap is reduced: (/) the destabilizing effect of the in
viscid forces and (/'/) the stabilizing one associated with the 
unsteady viscous forces. The result of these opposing in
fluences is that, as the annular gap is reduced, the system is in
itially destabilized (i.e., it becomes unstable at lower flow 
velocities); however, for sufficiently narrow annuli, further 
reduction of the gap produces a stabilizing effect on the 
system. This, in fact, is what intuition would also sug
gest: The monotonic destabilizing effect of the inviscid 
forces, eventually predicting instability at infinitesimally small 
flow velocities for very narrow annuli, cannot be physically 
correct; indeed, it is counteracted by the increasing impor
tance of the unsteady viscous forces, caused mainly by the 
viscosity-related changes in the unsteady pressure field, which 
are accounted for in the present analysis for the first time. 

The second item of interest is connected to the mode via 
which the system loses stability. It is shown that unless the 
fluid is very viscous or the annular gap very narrow, the 
system loses stability by divergence, generally in the first 
(lowest) mode. However, for a sufficiently narrow annulus or 
high fluid viscosity, the system may lose stability in a higher 
mode, either by divergence or by flutter. This last possibility is 
the most interesting one from the fundamental point of view. 
Something similar to this has been reported by Grotberg and 
Reiss (1982) for a biological system, where the inclusion of 
fluid frictional effects could alter the mode of loss of stability 
from divergence to flutter; however, the physical system in
volved was quite different. 

It should be remarked that the dynamics of the system 
beyond the first loss of stability are not only of academic in
terest. As shown by Paidoussis and Pettigrew (1979), the 
higher instabilities do materialize sequentially in some cases, 
since none of the instabilities is truly catastrophic in terms of 
amplitude. Evidently, nonlinear effects limit the amplitude of 
both divergence and flutter and, for sufficiently narrow an
nuli, the presence of the duct itself has the same effect. 

Comparison of this theory with the closest previous theory 
available (Paidoussis, 1973) validated all aspects that could be 
compared. However, as expected, the key element which is 
unique to this theory, i.e., the prediction of unsteady viscous 
forces, is different and superior to that of previous theory, by 
taking into account the viscosity-related changes in the 
unsteady flow field. In the present theory, instead of obtaining 
these unsteady viscous forces by an adaptation of formula
tions applicable to unconfined axial flow, they are derived 
analytically by means of an approximate solution of the 
Navier-Stokes equations, which is one of the main contribu
tions of this paper. Hence, for the dynamics and stability of 
flexible cylinders in narrow annular flow, this theory is 
superior to previously available ones, although the overall ef
fect is rather small. Of course, exactly how good the theory is 
will have to await experimental verification, which is currently 
being planned. However, it should be mentioned that for 
hinged rigid cylinders oscillating in annular flow, the unsteady 
viscous theory of Mateescu and Paidoussis (1987) has been 
validated experimentally (Mateescu et al., 1988 a,b), theory 
and experiment being in remarkably good agreement. 
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The Self-Noise From Ordered 
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This article is concerned with examining the self-noise produced by instability waves 
in a round jet. The self-noise is defined here as the noise attributed to the nonlinear 
sources in Lighthill's stress tensor. The calculated self-noise is found to be propor
tional to the fourth order of the velocity amplitude saturation. The self-interaction 
of the instability waves results in a "super-directivity." The dependency of the 
sound intensity on the Strauhal number and on the Mach number is in accordance 
with observations. 

Introduction 
Motivated by understanding the mechanism of sound 

generation at low Mach numbers, Laufer and Yen (1983) ex
amined experimentally the relationship between vortex pairing 
as an acoustic source and its far-field characteristics. In their 
experiment, a circular jet was excited at the most unstable fre
quency. The excitation phase locked the fluctuations into the 
fundamental and the subharmonic instability waves. The 
amplitude of the fundamental instability wave was seen to first 
increase exponentially as it was convected downstream, then it 
saturated and decreased. The saturation of the fundamental is 
associated with the periodic vortex formation in which the 
subsequent subharmonic amplifies. The first and second 
subharmonic behaved in a similar manner. The flow fluctua
tions were found to be dominated by those of the fundamental 
and the first and second subharmonics. A surprising result of 
their far-field investigations was that although the near-field 
pressure fluctuations vary linearly with the velocity amplitude 
fluctuations, the far-field pressure fluctutations are best cor
related with the square of the velocity amplitude fluctuations. 
No explanation was given for this puzzling result. It was con
cluded that the resulting radiation intensity is proportional to 
the fourth, rather than the second power of the maximum 
source amplitude fluctuations. This conclusion suggests a 
nonlinear sound generation mechanism. 

If one splits each velocity component into a mean and a 
fluctuating one, Lighthill's stress tensor Tij = p0uiuj can in 
turn be decomposed into contributions from the first-order 
fluctuations and from the second-order fluctuations. The 
first-order term in Lighthill's stress tensor is conventionally 
termed the "shear noise" while the second-order term is 
termed the "self noise." Lighthill's (1952) formulation thus. 
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suggests that the shear noise is more important than the self-
noise since the former in only linear in the fluctuating 
velocities while the latter is quadratic in the fluctuating 
velocities. Based on this assumption, Huerre and Crighton 
(1983) attemped to explain the observed far-field sound of 
Laufer and Yen (1983) by calculating the shear noise generated 
by instability waves in a low Mach number jet. Their theory 
suggested that the directional variation of intensity should be 
strongly influenced by certain quadropole factors which were 
not observed in the experiment. Also, the theory gives a 
weaker antenna variation than measured. Furthermore, the 
calculated far-field pressure is linear in the velocity fluctua
tions while in the experiment, the relation is definitely 
nonlinear. Huerre and Crighton (1983) made clear that 
although application of Lighhill's theory predicts some 
observed features of the far-field sound, it predicts just as 
clearly features which are not seen in the experiment. 

A clue to the interpretation of discrepancy between the 
theory and observations was given by Laufer and Yen (1983). 
They pointed out that the measured radiation at a fixed fre
quency is not necessarily generated by the instability wave of 
the same frequency, but could be generated through the in
teraction of waves of different frequencies. For instance, the 
far-field sound measured at a frequency corresponding to the 
first subharmonic's frequency is not produced by only the first 
subharmonic, but can also be a result of the interaction bet
ween the fundamental and the first subharmonic, or as a result 
of the self-interaction of the second subharmonic. If this is the 
case, then the far-field sound could be interpreted as a result 
of the second-order self-noise rather than the first-order shear 
noise. If one considers the self-noise to be important, the far-
field sound pressure will be dependent quadratically on the 
fluctuating velocity as in the experiment. The purpose of this 
work is therefore to examine the far-field self-noise by 
calculating the radiation field resulting from the interaction of 
several instability waves. The analysis essentially follows for
mulation developed in earlier investigations by Crow (1972), 
Crighton (1975), Ffowcs-Williams and Kempton (1978) and 
Huerre and Crighton (1983), among others. 
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The Near-Field 

The problem considered here is that of a round jet issuing 
from a nozzle of a given diameter, D, at low speeds. As in 
Laufer and Yen's (1983) observations, the sound sources are 
taken here to be dominated by the velocity fluctuations of the 
instability waves. Considering m instability waves, then the 
fluctuating velocity components u and v can be put in the 
following form following Laufer and Yen (1983): 

m 

l">v\= XJ Qk(x) "max, *[«*(>•)> vk(r)]exp (iukx-iukt) + c.c, 

k = 6, 1,2, m (1) 

where c.c. denotes a complex conjugate, umaxk is the max
imum fluctuating velocity component, uk(r) and vk(r) are the 
radial distribution of the velocity fluctuations given as the 
eigenfunctions of the linear instability equation. ak is the 
eigenvalue corresponding to the frequency wk. Qk(x) is the 
amplitude of the fluctuations which Laufer and Yen (1983) 
found to be approximately given by: 

Qk(x) = exp[-(.x-xk)
2/\k

2] (2) 

where \k is the wavelength of the k instability wave of fre
quency fk=f0/(2)k, and / 0 is the frequency of the fundamen
tal. xk is the pairing location where the amplitude of the 
velocity fluctuation of the k wave saturates. This location is 
governed by a feedback mechanism and is given according to 
Laufer and Yen (1983) by: 

xk/\k = 2/(\+Mc) (3) 

where Mc is the convection Mach number which is about half 
of the jet exit Mach number. The near-field velocity fluctua
tions are thus taken here to be given by a wave packet form at 
each frequency with a Gaussian envelope of width \ k . 

The Far Field 

Following LighthilPs (1952) acoustic analogy, the far-field 
sound pressure, Ps, is given in the polar coordinate system as: 

Ps(x, t) = 
1 

4xR«2 IN [>«» rdrdxdA. (4) 

a0 is the sound speed in the undisturbed field. R is the distance 
between the observation point and the exit of the jet. p is the 
undisturbed density and Cr is the total velocity component in 
the observer's direction given for an axisymmetric flow as 

C. = ucosd + usinflcosA (5) 
where u and v are the velocity components in the axial and 
radial directions, respectively. 6 is the angle between the jet 
centerline and the line connecting the jet exit to the observa
tion point. A is the azimuthal angle at the jet centerline that 
the direction of the source point makes with the direction of 
the observation point. Square brackets denote that the terms 
within are calculated at the retarded time, tr, where 

tr = t— \x-y\/a0 

t is the time and x, y_ are the observer's and source's location, 
respectively. We use the usual retarded time approximations: 

tr = t-R/a0 + (xcos0 + /-sin0cosA)/ao (6) 

where R= \x\. 
Each flow component is decomposed into a steady term, Cr, 

and a fluctuating term, cr. Thus, 

Consequently, for an incompressible flow, Lighthill's stress 
tensor can be written as 

The steady term in Tu produces no sound, the second term 
is the shear noise and the last term is the self-noise. The far-
field sound produced by the first-order term in Ttj has been in
vestigated by Huerre and Crighton (1983) and Mankbadi and 
Liu (1984). Our attention is focused hereon the far field pro
duced by the second-order self-noise term. Thus, the self-
noise, far-field is given by: 

/ \ = -
Po 

4irRa„ dt2 [ U2 cos2 8 + iivsmldcosA 

+ y2sin20cos2A] rdrdxdA. (8) 
Taking the velocity fluctuations to be composed of several 

instability waves as given by equation (1), the far-field, self-
noise is obtained in the form 

P . = -
AirRa, 

in m 
(o)k±Ul) UmMkUmmj 

\ I \dxrdrdAQkQfixp[i(uk + ai)x—i(o>k + o>i)xcosd/a0)]. 

2 

exp[ -i(<j)k±o>i)(t-R/a0)] ^AjCOSjA + c.c. (9) 
j=o 

where 

A0 = ukii,cos6 + t);(.!;/sin20/2 

A) = (fik + ^i)(fik + Vi)sm26 

A2 = vkvlsm2d/2. 

Performing the azimuthal integration, one obtains the self-
noise far-field at a frequency of (co^iu,) as: 

PA<*k ± ">/) = - ^ ^ - " m a x , t " m a x , / e x P ~ '("*• 

± « , ) ( / - * / « „ ) ] K ±co,)2 j \QkQ,z(a) 

exp[i(otk ±aj)x]dxrdr+c.c. (10) 

where 

z{a)=A0J0{a) -iA,J, (a) -A2J2(c) (11) 

and / „ , n = 0, 1, 2 is the Bessel function of order n and of 
argument a given by 

a=(oik± Wi)rsinO/a0. (12) 

It was shown by Laufer and Yen (1983) that the sound 
pressure level is concentrated in the first diameter of the jet 
where the shear layer is compact in the transverse direction. 
Hence, the integral of equation (10) can be separated into axial 
and radial integrals as in Huerre and Crighton (1983). Thus, 
the sound pressure level is given by: 

p2K±a,,) = 2(p0/2/?O2"Lx,**4«,,(«*±^ 14 I2 l/rl
2 (13) 

where 

Ix=\_a> QkQfixV{i(pLk±al)x-i(wk±wl)Xco$6/a0\ 

and 

{
DO 

Z(o] 
0 

)rdr. (15) 

Tu = Po[Cr
2 + 2Crcr + c2]. (7) 

With Qk(x) and Q/(x) given according to equation (2), the in
tegral Ix can be performed to obtain: 

/ , = XA[T/ (X | + X 2 ) ] l / 2 exp[ - (x , -x / )
2 / (X | + X2)]. 

exp [ - Tr2(\k ±X;)
2(1 -Mccosd)2/(\k

2 + X,2)] (16) 

where Mc = (wk±u,)/[(ak±at)a0]. 

The eigenfuctions u, and Vj involved in calculating the radial 
integral are approximated by the eigenfuctions of the neutral 
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point where v = i sech(?j). For a hyperbolic tangent mean flow 
profile, r)=y/50 and 80 is the initial half width of the shear 
layer. The integration is further restricted to the thin shear 
layer. With these assumptions, Ir can be evaluated to obtain: 

Ir = D8B [/, /ocos20 +12 (J0 - J1 /a0)sin2e 

~(28o/D)I3a0Joshi2B], (17) 

/j = 1 sech2ijtanh2r;rf)j 

I2 = \ sech2r)di] 

/3 = \ sech2ijtanh»;c??) 

and 

aa = ir(D/8mo)MSsm6 (18) 
where S is the radiation Strouhal number under consideration 
defined as S=fhmo/Uj. 8mo is the initial momentum thickness 
of the shear layer, £/, is the jet exit velocity, and/=o/2Tr. 

Considering now the self-noise resulting from the self-
interaction of the (S/2) instability component, the far-field 
radiation intensity can be written as: 

p2 = 16T6p2
0u*maxM](D2/R2)S2(C/Ujn50/8mo)

2 \IX 12 \Ir 1
2 (19) 

where C is the convection velocity with Ix now given by 
I/Xl2 = exp[-4TT2(1-Mccos0)2]. (20) 

Results and Discussions 

Nature of the Sound Sources. Figure 1 shows \Ir 1
2 as a 

function of the emission angle 6 for various jet velocities at 
Strouhal numbers S = St„/4, St„/2, and St„ where St„ is the 
Strouhal number of the most amplified natural frequency hav
ing a value of 0.017. The first term in Ir is proportional to 
cos20 and therefore is a longitudinal quadropole responsible 
for the sound emission at low angles to the jet axis. The second 
term in Ir is proportional to sin20 and therefore is a lateral 
quadropole responsible for the sound emission at angles 
perpendicular to the jet axis. Figures 1(a), (b), and (c) show 
that these two quadropoles are of the same order for the 
Strouhal numbers considered. At 0 = 0, Ja = 1.0 and therefore, 
at small angles to the jet axis Ir is independent of the jet veloci
ty. On the other hand, the lateral quadropole in Ir is depen
dent on the jet velocity through the dependency of (J0 - J{ /a0) 
on the Mach number (equation (17)). Therefore, this 
quadropole can vanish, for a given jet velocity, at a certain 
angle where Jo — Jl/oo = 0. At low Strouhal numbers cor
responding to the second subharmonic, Fig. 1(a) shows that 
within these jet velocities, the lateral quadropole is significant 
and it decreases with increasing the jet velocity. 

Figure \{b) shows that at a Strouhal number corresponding 
to the first subharmonic, St„/2, the lateral quadropole also 
decreases with increasing the jet velocity and vanishes for 
0 = 90 deg at jet velocity of 70 m/sec. At Strouhal number cor
responding to St„, Fig. 1(c) shows that at 90 deg, the lateral 
quadropole first decreases with increasing the jet velocity then 
increases again. At higher velocities, the angle at which Ir ap
proaches zero shifts from 90 deg to about 45 deg. The first 
nonzero root of J0-J{/a0 occurs at CT0 = 1.84. Thus, the 
lateral quadropole vanishes at an angle given by: 

sin0o = l.M8mo/(irDMS). 

For 5„o/Z> = 0.003, 0O is given by sin0D = 1.8 x 10-VMS. This 
shows that for Strouhal numbers less than 1.8 x 10~3/M, the 

2 1 0 1 2 

Fig. 1 Effect of jet velocity and Strouhal number on the angular varia
tion of the radial integral /,; (a) S = St„/4, (b) S = St„/2, (c) S = St„ 

lateral quadropole does not vanish. For higher Strouhal 
numbers, the lateral quadropole vanishes at an angle that 
decreases with increasing the Mach number. 

Directivity 

Figures 2 and 3 show a comparison between the calculated 
directivity of the first and second subharmonics at jet 
velocities of 30 m/s and 50 m/s, respectively, in comparison 
with the corresponding measurements. In each case, the 
theoretical curve is displaced vertically to match the ex-
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Fig. 2 Directivity of the first and second subharmonic at l/y = 30 m/s, 
excitation level: ujJ,0/U^=4x 1 0 - 3 ; (a) first subharmonic, (b) second 
subharmonic; 0: experiment (Laufer and Yen 1983)—theory 

perimental data around (1 -Mccos0)2 = O.95. The directivity 
in the present analysis is a result of the dependency of both Ix 
and Ir on 6. However, Ir is less dependent on 6 than is Ix. 
Therefore, the directivity here is basically dependent on (Ix)

2. 
Thus, in the present analysis, the sound intensity is propor
tional to exp (87r2Mccos0). This is in close agreement with the 
experimental results of Laufer and Yen (1983) which showed 
that the directivity is proportional to exp (90 Mc cos0). 
However, since 8TT2 < 90, the predicted dependency on 0 is less 
than that of the observations as Figs. 2 and 3 indicate. In the 
case of Huerre and Crighton (1983) where the shear noise was 
considered to be the dominant sound sources, the directivity 
of the calculated shear noise was found to behave as exp (52 
Mc cos0) which is much less than that of the self-noise and that 
of the measurements. Therefore, the observed superdirectivity 
cannot be explained by the shear noise, but can be attributed 
to the self-noise. 

Because \IX l2~exp(87r2Mc cos0), the directivity is depen
dent on Mach number. As the Mach number is increased, the 
directivity becomes more pronounced. This can be seen by 
comparing Fig. 2(a) to Fig. 3(a) and Fig. 2(b) to Fig. 3(b) 
which shows that both theory and observations idicate the 
directivity to increase with increasing the jet velocity. 

Spectra 

Figure 4(a) shows the spectra of the self-noise at 9 = 30 deg 
radiated at Strouhal number corresponding to S = 2St„, St„, 
St„/2 and St„/4, where the vertical scale of Fig. 4(a) is a 
relative one. The radiated noise at given Strouhal S is here a 
result of the self interaction of the S/2 frequency component. 
According to equation (19), the variation of the intensity with 
the Strouhal number is a result of the dependency of Ix and Ir, 
on S. The maximum amplitude saturation, wmax, is weakly 
dependent on the Strouhal number and its relative values were 
obtained from Laufer and Yen's (1983) data. The corres-
sponding measurements of Laufer and Yen (1983) is shown 
here as Fig. 4(b). Figure 4 shows qualitative agreement be
tween theory and observations. However, one should keep in 

mind that the noise measured at Strouhal number S is not only 
a result of the self-interaction of the S/2 instability compo
nent, but is also due to the shear noise of the S instability com
ponent as well as due to the interaction of the 3S/2 and the S/2 
frequencies components, or that of the 2S and S components. 
These secondary interactions between 2S and S and the in
teractions between 3S/2 and S were not considered here. The 
radiation of the fine-grained random turbulence is responsible 
for filling the gaps between the observed spikes in the spectra. 

Scaling Parameters 

In the present formulation, equation (19) shows the 
P2~umax- This is in good agreement with the observation of 
Laufer and Yen (1983) as Fig. 5 indicates. Huerre and 
Crighton's (1983) calculation of the shear noise indicate that 
P2~umax which contradicts the observations. Thus, the self-
noise can explain the nonlinear nature of the observed far-
field sound. Further, Laufer and Yen (1983) have shown that 
the experimental data for the far-field sound intensity can be 
scaled according to the form: 

P=(p2/p2
0u

2
max)(Mf2S^2)(R2/D2) = (F(l -Mccos0) (21a) 

The corresponding theoretical result for the self-noise is 
P={p2/p2

0u
2
mm)(My2STn

2)(R2/D2) 

= (b0/bmo)
2(C/Uj)\S/Sm)2 \Ir I

2 \IX\2. (216) 
C is the convection velocity = 0.5 U} and 50 = 2<5„,0 and S/S,„ is 
a fraction that depends on the frequency considered. Ir is less 
dependent on 0 than Ix is. Since lx is a function of (1 - Mccos0) 
as equation (20) indicates, then the right-hand side of equation 
(216) can be written as: 

F(\Ix\
2) = F(l-Mccos0) 

which is the same as the experimental results (equation (21a)). 
The variation of the normalized far-field radiation intensi

ty, as given by equation (21b), with the Doppler factor at 
S= St„/2, St„/4 is shown in Fig. 6 in comparison with the ex
perimental data. The figure shows that the calculated nor-
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Fig. 4 Far-field spectra: Uy = 50 m/s, excitation level O^glUJ •• 
1 x 1 0 ~ 2 , 9 = 30 deg; (a) theory, (b) experiment (Laufer and Yen 1983) 
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Fig. 3 Directivity of the first and second subharmonics at U( = 50 m/s; 
(a) first subharmonic at excitation level 0%0iuf = 4x 10~ 3 , (b) second 
subharmonic at excitation level "mo'U; 
(Laufer and Yen 1983)—theory 

5.8x10 J; 0: Experiment 

malized intensity is weakly dependent on the frequency which 
is in accordance with observation. 

The normalized intensity is dependent on the Mach number 
through the dependency of Ix on(l -Mccos0). Therefore, if 
one plots the normalized intensity against the Doppler factor 
for several Mach numbers, the slope of the curve should be 
almost the same. Figure 7 shows the calculated normalized 
far-field radiation intensity as a function of the Doppler factor 
in comparison with the experimental measurements. The 
figure shows that changing the jet velocity from 30 m/s to 70 

i<r5r-

10 

10" 

10 
10 -2 10 

u /U-umo /u j 

10 

Fig. 5 Variation of the far-field radiation intensity with the saturation 
amplitude of the eigenmodes, Uy = 30 m/sec, 0 = 30 deg, o, o, S ^ S2; 
o, « , S1 , S2 (repeat);—theory 

Journal of Applied Mechanics MARCH 1990, Vol. 57/245 

Downloaded 03 May 2010 to 171.66.16.244. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1(p 

10H — 

10J 

10z 

• 
o 

.9 

d - Mc cos e r 

1.0 

Fig. 6 Normalized far-field radiation intensity variation with the Dop> 
pier factor at various forcing levels and frequencies U, = 30 m/s; ex
periments r-,: u;„o/Uf:0, = 4 x 1 0 ~ 3 , A, 2 .9x10~ 3 ; D t . 7 x 1 0 - 3 

• °moluf = 4 x 1 0 ,—present theory, (equation (21b)) 
s2: 

m/s has little effect on the slope of the curve as the observa
tions indicate. 

Conclusions 

Lighthill's theory is used to predict the far-field sound 
resulting from the self-interactions of instability waves in a 
round jet. The self noise-intensity was found to be propor
tional to the fourth order of the velocity amplitude saturation 
which can explain the nonlinear behavior of the sound intensi
ty observed by Laufer and Yen (1983). The dependency of the 
sound intensity on Strouhal number and Mach number are in 
accordance with the observations. This self-interaction of the 
instability waves results in a "superdirectivity" as in the obser
vations. These agreements between the calculated 
characteristics of the self-noise and the observations suggest 
that the noise resulting from the self-interaction of instability 

Fig. 7 Normalized far-field radiation intensity variation with the Dop-
pler factor at various jet velocities: 0, Uj = 70 m/s; A, Ui = 30 
m/s—theory 

waves is a significant noise mechanism that cannot be 
neglected with respect to the shear noise. 
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Stress Fields of Interface Dislocations 

Chung-Yuen Hui1 and Dimitris C. Lagoudas2 

The procedure of computing the stress field due to an edge 
dislocation on the interface between two semi-infinite linearly 
elastic materials under plane-strain has been developed by Dun-
durs and Sendeckyj (1965), Braekhus and Lothe (1971), and 
Nakahara and Willis (1973). Dundurs and Sendeckyj used the 
Airy stress function approach, assuming both materials to be 
isotropic. The displacement approach used in Braekhus and 
Lothe (1971) and Nakahara and Willis (1973) is more general 
and works for the case when both materials are anisotropic 
and in three dimensions as well. Comninou (1977) obtained 
the stress field on the interface of the above problem when 
both materials are isotropic using the stress functions given in 
(1965), but the stress field elsewhere is not given. It should be 
noted that a considerable amount of algebra is involved in 
applying the methods described in Dundurs and Sendeckyj 
(1965), Braekhus and Lothe (1971), and Nakahara and Willis 
(1973). In applications (e.g., to find the interaction of a crack 
with a dislocation on the interface) it is necessary to know the 
stress field everywhere. The purpose of this note is to derive 
the stress field of an edge dislocation on the interface between 
two dissimilar but isotropic linearly elastic half-spaces under 
plane-strain loading conditions. The analytic function method 
of Muskhelishvili (1953) is used in our derivation, which leads 
to a significant reduction of algebra. 

Material 1, with shear modulus, G1; and Poisson's ratio, vu 

occupies the region x > 0 (a Cartesian frame xy is used), while 
material 2, with shear modulus, G2, and Poisson's ratio, v2, 
occupies the region x < 0. The edge dislocation with Burgers 
vector (b„ by) is located at the origin, while the interface is 
the/-axis. All functions and material constants with subscripts 
1, 2 correspond to material 1 and 2, respectively. From 
Muskhelishvili (1953), the displacements and stresses in each 
region are given by the analytic functions <p, and \j/h i.e., 

2Gj(Uj + iVj) = KjipiW-zpttz) ~ $M . (1) 

(o»); + (o^)/ = 2fo>-(z) + ip'j(z) ], (2). 

(oyy)j-i(oxy), = <p'i(z) + <p'i(z)+z<p"(z) + ̂ 'i{z). (3) 
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Let 

<Pi(z) = A, ln(z) + Q, (4) 

lM«) = B, lnfe), (5) 

where the constants Ah Bh C, are unknown and K, = 3-4J>,-. 
The choice of ip-, and 1/7 produces the same displacement field 
as given by Nakahara and Willis (1973). These constants are 
determined by imposing (1) continuity of traction across the 
interface x = 0, y jt 0, (2) global equilibrium so that the total 
force acting on any circuit enclosing the dislocation is zero, 
and (3) the displacement jumps ul + ivl-u2-iv1 across the 
interface to be (bx+iby)H(y). Ah Bh and C, are found to be 

A, = Ui(by-ibx), (6) 

B, = A2, B2 = Ai, (7) 

IT 

*i C, = —(K1A1 + A2)-Ax 

IT 
«2 C2 = —{K2A2 + A^ 

where 

Gi G2 
Oil = «2 

Gi G2 

(8) 

(9) 
T(KIG2 + Gt) ir(/c2G1 + G2) 

The constants C, are determined by fixing u, + iv,along the 
negativej'-axis to be filn(-y), where /3 = («1>l1-i?1)/2G1 = 
{K2A2-B2)/2G2. 

Using equations (2) and (3), the stress field in material 1 is 

, , bx(y
3-3x2y)-by(-x

3 + 3xy2) 

fe), = «• (x2+y2)2 

-bj + byX _ bxy + byX 
+ l0li (x'+y2) ai (x'+y2) 

_ bx(x
3-3xy2) + by(-y

i + 3x2y) 

\Oxyh - « i (x2+y2)2 

bxx-byy 
+ a2 • 

(x2+y2) 

_ bx( -f + 3x2y) +by(-x
3 + 3xy2) 

(Oyyh - «1 ( x 2 + y > ) 2 

-bj + byX bj + byX 
+ 2a, , , . , : + a2 2 \ . 

(10) 

(11) 

(12) 
(x2+y2) 

The stress field in material 2 is obtained from the above for
mulae by interchanging at and a2. On the interface x = 0, the 
tractions are 
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("xx)l = (°xxh 

(°xv)l = (axy)l 

bx (a, + a2) - + T by(ax - a2)b(y), (13) 

= - by (a, + a2) - - 7T 6X (a, - a2) 5(y), (14) 

which agrees with Comninou's result (Comninou, 1977). ayy 

is discontinuous across the interface, i.e., 

(Oi(0+ , . f) 

= fcx(-3ai + a 2 ) _ + it by(3ai + a2)S(y), (15a) 

(Oz(0 ,y) 

bx(-3a2 + ai) -K by (3a2 + ai)8(y). (15b) 
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Testing Numerical Integrations of Equations 
of Motion 

T. R. Kane3 and D. A. Levinson4 

Introduction 

After certain defects in step (4) of Kane and Levinson (1988) 
had been brought to our attention, we discovered that the 
range of applicability of the method there set forth for testing 
numerical integrations of equations of motion of mechanical 
systems could be extended, and the procedure simplified 
substantially, by replacing step (4) with: 

In step (4) let Z denote a function of t that satisfies the dif
ferential equation 

Z=-LGrur + L 

where E is the following sum over the v particles forming the 
system S under consideration: 
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E=E «/'•<' (2) 

Here, m; is the mass of Ph a generic particle of S; v ' is the 
velocity of P, in a Newtonian reference frame TV; and v, ' is 
the time-derivative, in TV, of the vector v , ' (/=1 v) 
which can be identified by inspection when the velocity v ' of 
Pi in TV is expressed as a linear function of the generalized 
speeds ur (r= 1, . . . , p), that is, as 

p 
-Pi ~P; 

(»'=1 ,")• (3) 

What makes it easy to carry out this new step (4) is that, in 
order to form E, one need not actually perform a summation 
over the individual particles of any rigid body that belongs to 
S. Instead, one can take advantage of the fact that EB, the 
contribution to E of the particles of a rigid body B, is given by 

EB = myy, + u>»I»<S, (4) 

where m is the mass of B; v is the velocity of the mass center of 
B in TV; \, is the time-derivative, in TV, of the vector v, which 
can be identified by inspection when v has been expressed as a 
linear function of the generalized speeds ur (r= 1, . . . , p), 
that is, as 

E f r " r + V,. (5) 

o> is the angular velocity of B in N; I is the central inertia 
dyadic of B; and &, is the time-derivative, in TV, of the vector 
Si, which can be identified by inspection when co has been ex
pressed as a linear function of the generalized speeds ur 

( r= 1 p), that is, as 
p 

">= T/UrUr + U,- (6) 
r = l 

The line of reasoning that leads to the new step (4) begins 
with the observation that equation (2) of this Note and equa
tion (5.6.15) of Kane and Levinson (1985) permit one to write 

- 2 ^ ; K r = t f 2 - j £ 0 + E. (7) 

Adding this equation and equation (22) of Kane and Levinson 
(1988), and making use of equation (6.1.1) of Kane and Levin
son (1985), one finds that, if Z is required to satisfy equation 
(1), then 

K + Z + .f?2-JK:() = 0 (8) 

from which it follows immediately that C defined as in equa
tion (13) of Kane and Levinson (1988) is a constant. 

Example 

Referring to the system shown in Fig. 5 of Kane and Levin
son (1988), one can express N\B', the velocity of B* in TV, and 
NuB, the angular velocity of B in TV, as 

vyB' = Q(L + <74)a2 - rw2a3 

(1) and 
Nh>B = ulal +u2a2 + [(L + cj4)Q/r]ai. 

Inspection of equations (9) and (10) reveals that 
/V*=fi(Z, + <74)a2 

(9) 

(10) 

(11) 

and 

Nr,B = co/! = [(Z, + ^4)n/r]a3. (12) 

Differentiation of equations (11) and (12) with respect to / in 
TV, and substitution into equation (4), with 
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of Motion 

T. R. Kane3 and D. A. Levinson4 

Introduction 

After certain defects in step (4) of Kane and Levinson (1988) 
had been brought to our attention, we discovered that the 
range of applicability of the method there set forth for testing 
numerical integrations of equations of motion of mechanical 
systems could be extended, and the procedure simplified 
substantially, by replacing step (4) with: 

In step (4) let Z denote a function of t that satisfies the dif
ferential equation 

Z=-LGrur + L 

where E is the following sum over the v particles forming the 
system S under consideration: 
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E=E «/'•<' (2) 

Here, m; is the mass of Ph a generic particle of S; v ' is the 
velocity of P, in a Newtonian reference frame TV; and v, ' is 
the time-derivative, in TV, of the vector v , ' (/=1 v) 
which can be identified by inspection when the velocity v ' of 
Pi in TV is expressed as a linear function of the generalized 
speeds ur (r= 1, . . . , p), that is, as 

p 
-Pi ~P; 

(»'=1 ,")• (3) 

What makes it easy to carry out this new step (4) is that, in 
order to form E, one need not actually perform a summation 
over the individual particles of any rigid body that belongs to 
S. Instead, one can take advantage of the fact that EB, the 
contribution to E of the particles of a rigid body B, is given by 

EB = myy, + u>»I»<S, (4) 

where m is the mass of B; v is the velocity of the mass center of 
B in TV; \, is the time-derivative, in TV, of the vector v, which 
can be identified by inspection when v has been expressed as a 
linear function of the generalized speeds ur (r= 1, . . . , p), 
that is, as 

E f r " r + V,. (5) 

o> is the angular velocity of B in N; I is the central inertia 
dyadic of B; and &, is the time-derivative, in TV, of the vector 
Si, which can be identified by inspection when co has been ex
pressed as a linear function of the generalized speeds ur 

( r= 1 p), that is, as 
p 

">= T/UrUr + U,- (6) 
r = l 

The line of reasoning that leads to the new step (4) begins 
with the observation that equation (2) of this Note and equa
tion (5.6.15) of Kane and Levinson (1985) permit one to write 

- 2 ^ ; K r = t f 2 - j £ 0 + E. (7) 

Adding this equation and equation (22) of Kane and Levinson 
(1988), and making use of equation (6.1.1) of Kane and Levin
son (1985), one finds that, if Z is required to satisfy equation 
(1), then 

K + Z + .f?2-JK:() = 0 (8) 

from which it follows immediately that C defined as in equa
tion (13) of Kane and Levinson (1988) is a constant. 

Example 

Referring to the system shown in Fig. 5 of Kane and Levin
son (1988), one can express N\B', the velocity of B* in TV, and 
NuB, the angular velocity of B in TV, as 

vyB' = Q(L + <74)a2 - rw2a3 

(1) and 
Nh>B = ulal +u2a2 + [(L + cj4)Q/r]ai. 

Inspection of equations (9) and (10) reveals that 
/V*=fi(Z, + <74)a2 

(9) 

(10) 

(11) 

and 

Nr,B = co/! = [(Z, + ^4)n/r]a3. (12) 

Differentiation of equations (11) and (12) with respect to / in 
TV, and substitution into equation (4), with 
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^ K w W f > — F I 

^ 

leads to 

/7777777777777777?777777777777777777777' 

Fig. 1 Two particles on a moving base 

I = _-M/-2(a,a1+a2a2 + a3a3), 

ZB=— MUQ(L + q4)
2. 

(13) 

(14) 

Substitution from this equation and equations (55) of Kane 
and Levinson (1988) into equation (1) gives 

Z = 6[(«,-Q)«1+«2
2]+— MQ(l(L + q4)

2, (15) 

which is precisely equation (59) of Kane and Levinson (1988), 
but has been obtained with far less labor than the old step (4) 
required. 

A situation in which the new step (4) can be applied, 
whereas the old step (4) could not, arises in connection with 
the system depicted in Fig. 1, which consists of a movable base 
B, and two particles P and Q, each of mass m. B moves 
horizontally relative to an inertially fixed wall N, in such a way 
that the distance x between N and B is a specified function of 
time /. P is connected to B by a linear spring S of modulus k, 
and P is connected to Q by an actvator (not shown), which ex
erts oppositely directed forces of magnitude F on each of P 
and Q. L is the natural length of S, and ql and q2 are 
generalized coordinates, with q{ the extension of S, and q2 the 
distance from P to Q. 

Defining generalized speeds ux and u2 as 

« , = # , , u2 = q2, 

one can write the velocities \p and v e of P and Q as 

vp= ( i + « , ) n 

yQ = ( i + u , + «2)n, 

where n is a unit vector directed as shown in Fig. 1; and, if Fis 
such that u2 is related to Wj in accordance with the relation 

(16) 

(17) 

(18) 

= 7 « i . (19) 

where 7 is a specified function of t, then equation (18) can be 
rewritten as 

\Q = [x + ( l+7)« , ]n . (20) 

Comparison of equations (17) and (20) with equations (3) 
shows that 

v? = ( l+7)n 

(21) 

(22) 

\f = xn (23) 

\P=xn, (24) 

so that the generalized active force, Flr is given by 

Fl = v? • [ ( - kq, - F) n] + yQ
T • (Fa) =-kql+yF, (25) 

and substitution from equations (17), (18), (23), and (24) into 
equation (2) yields 

L = mx[2x+(2 + y)ui]. (26) 

Comparing equations (7) and (8) of Kane and Levinson (1988) 
with equations (16) and (19) of the present Note, one finds 
that 

JVn = l,Wl2 = 0,W2l=0,lV22 = l,A2l=y,B2=0 (27) 

and with 

1 

T 
and 

Gx=yF, (29) 

it can be verified that equations (9) and (10) of Kane and 
Levinson (1988) are satisfied. Thus, substitution from equa
tions (29) and (26) into equation (1) yields 

V=^kq\, (28) 

(30) 

(31) 

(32) 

Z = - yFuj + mx[2x + (2 + y)ux ]. 

The system's kinetic energy, K, is 

K = —ml(.x+u1)
2 + [x+(l+y)ul]

2}, 

which shows that 

K0 = mx2, * 2 = 1 m[l + ( l + 7 ) 2 K . 

This, together with equation (28) and equations (13) of Kane 
and Levinson (1988), leads to the checking function 

C = — kqf + Z + — m[\ + (l+y)2]ux-mx2. (33) 

The old step (4), instead of producing equation (30), yields 

Z = -yFu, +m{x[2x+ ( 2 + 7)H,] 

+ 7W1[x+(l+7)w1]), (34) 

which contains an extraneous term and would thus give rise to 
an incorrect checking function. 
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On Immobile Kinematic Chains and a 
Fallacious Matrix Analysis1 

S. Pellegrino2 and C. R. Calladine.2 A substantial portion 
of this Brief Note consists of an attack on a paper of 
ours: Pellegrino and Calladine, 1986. We are familiar with 
this attack, since it is almost the same as one which the Inter
national Journal of Solids and Structures had agreed to 
publish last year, together with a closure by ourselves. At the 
last minute, however (certainly after we had corrected the 
proofs of our closure), Kuznetsov decided to withdraw his 
discussion. In these circumstances we decided to submit a 
short paper about the matters under discussion to the Interna
tional Journal of Solids and Structures; and this has now been 
accepted for publication. 

We do not wish here to repeat all of our detailed comments 
on Kuznetsov's opinions; but it is desirable for us to make 
brief remarks about three of his statements, as follows. 

1 Kuznetsov quotes from us: "When we allow the 
assembly to distort in its inextensional modes, it will be able, 
after all, to support a completely arbitrary set of loads . . . if 
the matrix A' is of full rank." He then states: "The premise 
is devoid of any notion of stability thus emasculating the pro
posed matrix test." 

In fact, a large part of Section 9 of our paper is devoted to a 
discussion of this point. Our paper was first presented at the 
I.U.T.A.M. Congress at Lyngby in 1984. As a result of discus
sions with several participants there, and in consequence of 
comments provided by referees (as described under 
Acknowledgements in our paper), the version published in 
1986 was an improvement of the earlier work. In particular, it 
included as Fig. 10 the example of Kuznetsov's Fig. 1(c), 
which had been provided as a destructive counter-example by 
a referee, but which in fact furnished a nice illustration of our 
point about the importance of making a sign-check. 

2 Kuznetsov states that our method: "fails to recognize 
the system in Fig. 1(c) as a finite mechanism." 

This is not true, provided our method is applied correctly. 
The method may well appear to fail to detect a finite 
mechanism if one examines only two particular independent 
mechanisms; but it succeeds when one considers all linear 
combinations of these, as indeed Kuznetsov acknowledges. 
However, whereas he appears to believe that this step involves 
"an infinite number of operations," in fact the calculation 
can be done either by hand on a small piece of paper or on a 

'By E. N. Kuznetsov and published in the Mar. 1989 issue of the ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 56, pp. 222-224. 

Department of Engineering, University of Cambridge, Cambridge, U.K. 
CB2 1PZ. 

small computer very quickly. We give full details of this in our 
forthcoming paper. We also emphasize there that our matrix 
method does not, strictly, detect finite mechanisms, but ac
tually those which are "of higher than first order." 

3 Kuznetsov dismisses lightly the connection which Tarnai 
has made between mirror symmetry and a. finite mechanism in 
his ring example. It seems to us that Tarnai provides a clear in
sight into a rather complicated three-dimensional assembly. 
The crucial role of symmetry in this case is completely absent 
from Kuznetzov's proposed "equivalent" system, shown in 
his Fig. 3. 
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Author's Closure 
The following is a response to the three remarks of 

Discussion. 
1 The "sign-check" is the crux of the problem. If the 

authors fully appreciated its crucial role in the problem under 
consideration they would 

(i) employ the perceived "supplemental" check as a basis 
for their analysis, and find out that a meaningful check calls 
for the construction and investigation of a certain quadratic 
form; 

(ii) recognize this form as a classic found in works of Levi-
Civita and a few others, and used for detection of infinitesimal 
mechanisms since the early 1900s; and, finally, 

(iii) discard their matrix analysis, upon realizing that // is 
useless whether or not "supplemented" by the sign-check. 
"Unsupplemented," the analysis fails to achieve its stated 
goal of detecting infinitesimal mechanisms; "supplemented," 
the matrix analysis is superfluous since the sign-check by itself 
solves the problem: It yields the quadratic form whose 
definiteness alone is known to be both necessary and sufficient 
for kinematic immobility. 

2 This one is a manner of nuance. The "destructive 
counterexample" could not "furnish a nice illustration of our 
point about the importance of a sign-check," since the very 
sign-check, absent in all prior renditions of the paper, was just 
a late and inadequate reaction to the counterexample. When 
elaborating on it, Pellegrino and Calladine consistently discuss 
two internal mechanisms or (extrapolating their conclusion to 
a general system) all mechanisms. They mention neither the 
term "linear combination," nor its immediate and 
unavoidable consequence, "quadratic form," apparently be
ing unaware of both. While the present Discussion refers to 
linear combination, the persistent absence of any notion of 
quadratic form is puzzling, especially since this classical form 
has been reproduced in the subject note. What is this 
mysterious new sign-check requiring a finite number of opera-
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tions "done very quickly"? Can it be that the authors have 
managed to do away with the old faithful quadratic form and 
found a simpler alternative sign-check? This certainly would 
be a significant advance in the state of the art. However, short 
of this miraculous cure, the proposed matrix method is 
beyond salvation, as shown in the above (i)-(iii). 

3 The absence of symmetry is exactly the point: even the 
two spans in the "equivalent" system were made unequal. 
This has been done in order to demonstrate that symmetry is 
not a factor in Maxwell's conceputalization, and that prestress 
is impossible in any finite mechanism. Although Tarnai's ring 
(a space truss with bars arranged along the edges of 
Archimedes' antiprism) indeed possesses an interesting sym
metry, this has no relation to its inability to hold a self-stress. 
In the authors' notation (Reference), both of the systems are 
characterized identically: s = m = 1, where s is the degree of 
statical indeterminacy and m is the number of mechanisms. 
Since both systems are finite mechanisms, neither can be 
prestressed. 

An Alternating Frequency/Time Domain 
Method for Calculating the Steady-State 
Response of Nonlinear Dynamic Systems3 

F. H. Ling.4 Periodic response of nonlinear dynamic 
systems are calculated by expanding the response into the 
Fourier series and using the Fast Fourier Transform (FFT) 
technique in this paper. This paper is written in an easily 
understood manner and contains some useful material 
towards engineering applications. As the authors of the paper 
pointed out, there are fundamental similarities in the concepts 
underlying their method (AFT) and the Fast Galerkin method 
(FG) described in an earlier work of ours (Ling and Wu, 
1987). Moreover, the authors listed three differences between 
these two methods, two of which will be discussed as follows. 

The first difference concerns the form of the equations to be 
solved. It is emphasized that the AFT permits the equations to 
be of any order, but the FG does not. In fact, there are two 
subsections (4.4 Treatment of a Second-Order Equation and 
4.7 Equations in Implicit Form) in Ling and Wu (1987), in 
which the possibilities of treating higher-order equations not 
only in explicit form but also in implicit form are discussed. 

The second point is about the form of nonlinearities han
dled. Although we did not give an example containing a 
nonanalytical nonlinearity, there is no problem in treating it. 
Since the nonlinear function f[x,^>(0> t\ in our notation is 
calculated numerically at discrete nodes t-,,i= 1, 2, . . . , 2me, 
so the nonanalytical nonlinearity can be equally handled. 

Besides, a comparison with the Runge-Kutta method and 
two-point boundary value formulation are touched in this 
paper. Two remarks will be made as follows. First, a fixed 
steplength Runge-Kutta method mentioned in the paper is now 
usually replaced by an adaptive steplength one, especially if 
there is an abrupt change or even a discontinuity in the< 
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nonlinearities (cf., Stoer and Bulirsch, 1982 and also the IMSL 
subroutine IVPRK and DIVPRK). Second, there are intensive 
studies on using the shooting method to solve two-point 
boundary value problems with the aim of calculating periodic 
solutions (cf., e.g., Ling, 1981, 1982, 1983). To quote from 
Ling and Wu (1987), "The advantages of the Fast Galerkin 
Method are the completeness in the theory, the clearness in 
physical meaning and the directness in error estimation. 
Especially for simpler problems or problems requiring only 
low accuracy, the amount of computation by the Fast 
Galerkin method is less than that of the direct numerical 
method." Since AFT and FG are in essence the same, so this 
conclusion may also be applied to AFT. 
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Authors' Closure 

We thank Professor Ling for his thoughtful and instructive 
comments on our paper. We especially appreciate the note 
from his own research that the Fast Galerkin (FG) method 
offers computational and theoretical advantages over shooting 
methods in many instances, and that this would also apply to 
our Alternating Frequency/Time (AFT) domain method. 

Several of Professor Ling's comments are replies to our 
discussion of his work (Ling and Wu, 1987). We agree that 
the FG and AFT methods are fundamentally similar in bal
ancing multiple harmonic terms in an equation, and using a 
fast Fourier transform (FFT) to obtain the harmonic content 
of the nonlinear terms. Consequently, the comments here and 
in our paper focus on how to view and implement the solution 
of a nonlinear dynamics problem, rather than on theoretical 
differences. 

Professor Ling is correct in stating that Ling and Wu do 
mention the possibility of treating higher than first-order equa
tions. However, since they formulate the FG method for sys
tems of first-order ODE's, and do not show how higher-order 
equations are handled, the reader can be left with the impres
sion that higher-order equations should be decomposed into 
first-order equations involving the state variables. The point 
we made is that this adds unnecessary computation since the 
velocity function is derivable from the displacement function 
and need not be calculated independently. 

Professor Ling is also correct in stating that there is nothing 
to prevent the FG method from handling nonanalytic nonlin
earities. Our work with a discontinuous nonlinearity (Coulomb 
friction) should be seen as an extension applicable to FG as 
well as AFT, and not as a limitation in the FG method. 

The principal advantage in the AFT implementation is 
this: The unknowns are the complex components of the dis
crete Fourier transform of the dependent function, rather than 
the real coefficients of its Fourier series, as in FG. This simple 
difference in perspective—for periodic functions they are 
mathematically equivalent—can provide substantial compu
tational advantages. The advantage is not immediately ap-
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parent since the AFT formulation results in a system of complex 
linear equations rather than the real linear equations obtained 
from the FG implementation. However, AFT has half as many 
equations, the bandwidth is smaller, and most methods for 
solving linear equations apply to complex as well as real sys
tems. Since the number of operations in solving a linear system 
tends to go in proportion to the square of the number of 
equations, and there are tricks for achieving special efficiency 
in complex multiplication, the AFT formulation appears to be 
more advantageous. Furthermore, if an FFT is used to compute 
the harmonic components of a function, the AFT method can 
use the complex components of the FFT directly, saving the 
overhead of converting to Fourier series coefficients and sep
arating the real and imaginary equations. 

We also provide another extension, in addition to treating 
nonanalytic functions, which can be applied to either AFT or 
FG. This extension removes insignificant harmonic compo
nents from the system of equations in order to achieve even 
greater computational savings. This also allows us to look at 
widely disparate harmonic components, due perhaps to mul
tiple forcing frequencies, without creating an equation for 
each harmonic component below or between the principal 
harmonics. 

In regard to direct integration techniques: we did use an 
adaptive step-size Runge-Kutta method. In the case of a non-
analytic nonlinearity, such as Coulomb friction, it is essential 
that a time step not cross over a nonanalytic point. Time steps 
must end and begin on these points for the Taylor series to be 
valid. However, to compare the error between AFT and direct 
integration, we needed a fixed At to get a fixed number of 
sample points per period of oscillation. So the adaptation we 
made was to use a fixed At except around a point of discon
tinuity where we split the fixed time step into two pieces in 
order to end and begin on the discontinuity. 

This is not the type of adaptive step to which Professor Ling 
is referring, so it is worth adding that we did try a canned, 
adaptive step-size algorithm (Press, et al., 1986) for time bench
marks, with poor results. Generic adaptive step-size algorithms 
can have difficulty with a discontinuous function because the 
error estimate governing the choice of step size is based on a 
Taylor series that may not exist. Adaptive step-size Runge-
Kutta is still the method of choice with a discontinuous func
tion, but the adaptive step algorithm should be written by the 
user to incorporate knowledge of the function. 

We did not try shooting to converge directly on a steady-
state result so we appreciate Professor Ling's comments in this 
area. We doubt, however, that shooting would ever be com
putationally advantageous with nonlinearities such as Cou
lomb friction, since each degree-of-freedom requires three state 
variables—velocity, displacement, and the position of the fric
tion element. And the typical approach for correcting the initial 
values of the state variables can have unpredictable results with 
sharply discontinuous nonlinearities like friction. Also, the 
error comparison we made with Runge-Kutta would apply to 
an equivalent shooting method, so we doubt that shooting 
could offer increased accuracy—at least in the case of a dis-
continous nonlinearity. 

Maximal Crack Tip Shielding by 
Microcracking5 

C. H. Wu.6 The authors presented a very concise and ex
plicit calculation and showed that normal microcracking max
imizes shielding. The starting point is the complementary 
energy 

X(o)=X0{o)+f(ouo1) 

where 
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(1) 

(2) 

and Ca/j are explicit expressions derived from a dilute crack 
concentration assumption. The crack tip J-integral, denoted 
by J,, may be written as 

/ , =F(P)Kj (3) 

where P is the author's distribution density. The explicit 
calculation performed by the authors showed that normal 
microcracking maximizes F(P). The proof is beautifully 
done. 

The meaning of the equality 

J, = Jo», (4) 

however, is not clear. It was deduced from the assumption 
that one of the/ ' s satisfying (2) described "the response of the 
material under proportional and monotonic stress paths." 
The exact connection between the statement and the desired 
crack-tip solution is not clear. On the other hand, the same 
equation (4) must hold for ally's satisfying (2). The implica
tion is that K, is not affected b y / a s long as it satisfies (2). 

If the saturated zone and transition zone were actually ex
perimentally determined, then the desired K, would be deter
mined from a well-defined problem. Let W(e,x) denote the in-
homogeneous strain energy density. Then 

dX« 

dW 

explict 

where 

, = WSa„ - T^UW 

(5) 

(6) 

is the Eshelby tensor. The result of integrating (5) over the 
semi-infinitely cracked region is (Wu, 1988) 

J,=J*+ J. 
Transition 

(dW/dXl)expK icit dA' (7) 

It is seen from (4) and (7) that (4) bypasses the difficult task of 
solving an inhomogeneous inhomogeneity problem. The ques
tion is what are the connections, if any, among the infinitely 
many cases implied by (4) and (7). 
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Mechanics of Machining: An Analytical Approach to Assess
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REVIEWED BY MILTON C. SHAW1 

This well written and organized monograph presents a very 
thorough continuum mechanics approach to steady-state 
metal cutting where the chips produced are in the form of con
tinuous ribbons. The initial method employed is to determine 
the flow lines experimentally by measuring the distortion of an 
internal photoresist grid in front of a tool after cutting has 
been abruptly interrupted by an explosively-activated quick-
stop device. These flow lines are used to obtain strains over the 
deformation zone extending from the tool tip to the free 
surface. 

A plane-strain slip line field approach was first applied 
assuming a constant shear flow stress (fc). At low cutting 
speeds and for soft annealed materials showing a large tenden
cy to strain harden, the shear zone was relatively extensive and 
strain rate and temperature effects were negligible. The varia
tion of k due to strain hardening was included in the analysis. 
At higher, more practical cutting speeds, the shear zone 
became more concentrated and approximated a shear plane. A 
parallel-sided shear zone of width AS2 was then adopted and it 
became advisable to include the influence of strain rate and 
temperature on k as well as strain hardening. 

The effects of strain hardening and strain rate were included 
by obtaining experimental material constants from a few 
points of metal-cutting data. The strain rate pertaining was 
obtained by approximating AS2 from quick-stop photographs 
and extending the measured values to other values of feed by 
using what the author refers to as a scaling factor. 

This assumes that AS2 is inversely proportional to the length 
of the shear zone and, hence, to the feed for a given shear 
angle. Temperature effects are combined with strain rate ef
fects by use of the velocity modified temperature concept. 

A useful discussion of the problem of determining the direc
tion of chip flow for cutting tools having an inclination angle, 
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side cutting-edge angle, and nose radius is given in Chapters 8, 
9, and 10. 

Not included in the analysis is the fact that the resistance to 
shear flow for a given material depends not only on strain, 
strain rate, and temperature, but also on the homogeneity of 
strain pertaining. The latter quantity is related to structure 
(defect structure due to second phase particles, inclusions, 
grain boundaries, voids, etc.). These defects can cause the 
strain along a chip to be very inhomogeneous frequently giv
ing rise to sawtooth chips or even discontinuous chips that in
volve cylic behavior. Since the width of the deformation zone 
in metal cutting is usually the same order of magnitude as the 
defect spacing, a size effect results. That is, the probability of 
finding a defect of a given intensity in the concentrated defor
mation zone decreases as the undeformed chip thickness 
decreases. This is an important reason why the deformation in 
metal cutting is usually inhomogeneous and why the specific 
cutting energy increases exponentially with a decrease in feed 
rate. The author suggests that the increase in specific energy 
with decrease in feed can be explained completely by an in
crease in strain rate. However, it should be kept in mind that 
metal cutting data has been used to evaluate the material con
stants ignoring the size effect and that the thickness of the 
deformation zone has been assumed to vary inversely as the 
shear plane length (feed). These two effects tend to mask the 
cause of the size effect and could tend to attribute too much of 
the increase in specific energy with decrease in feed to strain 
rate and temperature than is actually the case. However, as 
long as the analysis is used to interpolate and extend ex
perimental metal cutting data and not to ascertain the basic 
cause of the observed behavior, this is satisfactory. It is 
somewhat akin to the velocity modified temperature concept 
but for strain inhomogeneity. 

This book provides about the best treatment possible of the 
metal-cutting process for the case of homogeneous steady-
state strain from the continuum mechanics point of view. It 
should be studied by all serious researchers in this field for the 
insight it provides into the intricacies of the process. It should 
be noted that the author clearly indicates in the preface that 
the material science (structural) aspects of material behavior 
are not considered in his treatment. As long as this limitation 
is recognized and kept in mind, this is a useful contribution. 
However, to ensure that this important point not be over
looked, it is unfortunate that the title did not read "Con
tinuum Mechanics of Metal Cutting." 
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